
Exercise: Docker Intro Hands-On (BONUS)

Conventions
When you see anything enclosed in “less than” and “greater than” symbols,
like <this>, interpret what’s in those brackets yourself - do not copy and paste
<this>. Here’s an example - when you see:

ps <Hit TAB><hit Enter>

You should press these keys:

p s spacebar tab enter

Here’s another example - when you see:

echo <your name>

Please type echo, then hit the spacebar, then type your name, then hit Enter.

Steps
1. Start up a fresh lxterminal by clicking the “sparrow” logo in the bottom-left

corner of the screen, clicking run, typing lxterminal and hitting enter.
Alternatively, use the hot key sequence below:

<hold down Alt><hit F2>lxterminal<HIT the enter key>

2. Log in to the docker virtual machine with password logidebtech:

ssh user@docker
logidebtech

3. Sudo to root with the same password logidebtech:

sudo su -
logidebtech

4. We can start using Docker by executing a single client command:

docker run -it centos:7 /bin/bash

5. Your machine will now pull an official Centos 7 image from Docker Hub
and starts a container using this as the filesystem, running /bin/bash as

1

its only process. Once the container starts, we’ll get a shell. Let’s get a
process list with ps:

ps -ef

6. Observe that you have only one process besides the bash shell: a ps
command. Here was the output on a sample machine:

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 17:31 pts/0 00:00:00 /bin/bash
root 14 1 0 17:31 pts/0 00:00:00 ps -ef

7. Let’s detach from this container’s terminal. While holding down Ctrl-P,
hit Q:

<Hold down the CTRL and P keys><Hit the Q key>

8. Get a list of running containers on the system with the docker ps com-
mand.

docker ps

9. In the first column, you’ll see a container ID, a random SHA-256 hash
string. Docker also creates a random human-friendly name, which you’ll
find in the last column. Note the name of your new container. In the
example below, the container is named “upbeat_borg.”

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
498e5be7a23b centos:7 "/bin/bash" 14 seconds ago Up 13 seconds eloquent_shirley

10. Re-enter the container by attaching a TTY to that container’s first process.
We’ll use Docker’s command completion by hitting tab instead of typing
a container name, allowing docker to fill in the name of the only running
container:

docker attach <Hit TAB>

11. Let’s kill this container off, so we can start a new one with a name that we
choose. If we exit the container’s PID 1 process, the container will stop.

exit

12. Let’s run a docker ps to list running containers:

docker ps

13. Observe that the container is no longer in the output - here’s the sample
output from our example system:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

14. The container is still present. We are able to investigate it if we want. For
now, let’s list all containers, including those no longer running:

docker ps -a

2

15. Observe that the container’s status column says that it exited some minutes
ago. Here’s our sample output:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
498e5be7a23b centos:7 "/bin/bash" 41 seconds ago Exited (0) 4 seconds ago eloquent_shirley

16. Let’s remove this container from the system. The command below will
use docker ps -a, place the container ID into a variable called $ctr, then
remove (delete) the container. You’ll see the container’s ID output if the
container is removed successfully.

ctr=$(docker ps -a | grep centos:7 | awk '{print $1}')
docker rm $ctr

17. Let’s start a new container using the centos:7 image, but pass in a --name
flag to name the container one_shell.

docker run -it --name=one_shell centos:7 /bin/bash

18. Let’s create a filesystem change in this container now, to explore union-
mounted filesystems.

echo "kube" >/etc/changedfile.txt

19. Let’s detach from this container’s terminal. While holding down Ctrl-P,
hit Q.

<Hold down the CTRL and P keys><Hit the Q key>

20. Next, start another container using the centos:7 image.

docker run -it --name=second_container centos:7 /bin/bash

21. Check for an /etc/changedfile.txt file in this container - you should
receive an error saying the file does not exist.

ls -l /etc/changedfile.txt

22. Let’s create that file, but with different contents:

echo "1234567890" >/etc/changedfile.txt

23. Detach from this container’s terminal. While holding down Ctrl-P, hit Q.

<Hold down the CTRL and P keys><Hit the Q key>

24. Let’s stop both containers. This may take a few seconds – Docker will first
send a SIGTERM to the container’s PID 1 bash shell, wait a bit, then
send a SIGKILL:

docker stop one_shell second_container

25. We know both containers had their own filesystem. The filesystem contents
will be deleted when we delete the containers, unless we persist those
contents by committing them to an image repository (repo). Let’s commit

3

each of them to a different image repo on this system. First commit the
one_shell container’s contents to the contents_were_kube image repo:

docker commit one_shell contents_were_kube

26. Commit the second_container filesystem contents to the contents_were_digits
local repo:

docker commit second_container contents_were_digits

27. Now get a list of the container images on this system:

docker images

28. Notice that there are three images cached on this system now:

REPOSITORY TAG IMAGE ID CREATED SIZE
contents_were_digits latest e2a8b024356b About a minute ago 204MB
contents_were_kube latest 28d108028ae4 About a minute ago 204MB
centos 7 eeb6ee3f44bd 6 months ago 204MB

29. Let’s use the contents_were_digits image to start a new container.

docker run -it --name=newctr contents_were_digits /bin/bash

30. Check out the contents of the changedfile.txt file - you should find the
text “1234567890” in this file.

cat /etc/changedfile.txt

31. Now detach from the container. While holding down Ctrl-P, hit Q.

<Hold down the CTRL and P keys><Hit the Q key>

32. Stop and remove the newctr container, using the -f (force) option on
docker rm:

docker rm -f newctr

33. Let’s look at those two container images we committed using the docker
history command. First, look at the contents_were_kube image.

docker history contents_were_kube

34. Look at the layers in this image. Here’s our sample output:

IMAGE CREATED CREATED BY SIZE COMMENT
28d108028ae4 3 minutes ago /bin/bash 5B
eeb6ee3f44bd 6 months ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 6 months ago /bin/sh -c #(nop) LABEL org.label-schema.sc... 0B
<missing> 6 months ago /bin/sh -c #(nop) ADD file:b3ebbe8bd304723d4... 204MB

31. Compare them to the layers in the centos:7 image that your machine has
cached:

docker history centos:7

4

35. Here’s the output of that on our test system:

IMAGE CREATED CREATED BY SIZE COMMENT
eeb6ee3f44bd 6 months ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 6 months ago /bin/sh -c #(nop) LABEL org.label-schema.sc... 0B
<missing> 6 months ago /bin/sh -c #(nop) ADD file:b3ebbe8bd304723d4... 204MB

36. Note that the contents_were_kube image has all the layers from centos:7
and then one more layer. That layer contains the minimal filesystem
changes we made in the one_shell container. In our example output,
this top layer takes up 5 bytes, which seems to correspond to the bytes
“kube<EOF>”.

37. Take a look at the image layer list on the contents_were_digits image
with docker history.

docker history contents_were_digits

38. Notice how the contents_were_digits differs from the contents_were_kube
image only in one layer. The differing layer has a slightly different size,
reflecting the size of contents we put in the /etc/changedfile.txt
file. In contents_were_kube on our test system, this layer was 5 bytes,
whereas it was 11 bytes in contents_were_digits, corresponding to the
bytes “1234567890<EOF>.” Here’s the same output from our test system:

IMAGE CREATED CREATED BY SIZE COMMENT
e2a8b024356b 10 minutes ago /bin/bash 11B
eeb6ee3f44bd 6 months ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 6 months ago /bin/sh -c #(nop) LABEL org.label-schema.sc... 0B
<missing> 6 months ago /bin/sh -c #(nop) ADD file:b3ebbe8bd304723d4... 204MB

39. Let’s see how these layers are stored on the filesystem. We’ll be ex-
ploring /var/lib/docker/overlay2/. Let’s use docker inspect on the
contents_were_digits image, along with the jq (json query) utility. We’ll
learn a ton about how to use jq later in this class.

docker inspect contents_were_digits | jq '.[] | .GraphDriver'

40. Here’s the output from our test system. Note the four paths listed here -
you can read more about them in the documentation for overlayfs.

{
"Data": {

"LowerDir": "/var/lib/docker/overlay2/36ab5f1c64f60e31db2554a97e824c48a32d83f77ad9b9221b510e16467c512b/diff",
"MergedDir": "/var/lib/docker/overlay2/f07b162a86e9d9ee810fca80561e691caf0e3759a0b2fe12f3ffc1cb7b9f19f7/merged",
"UpperDir": "/var/lib/docker/overlay2/f07b162a86e9d9ee810fca80561e691caf0e3759a0b2fe12f3ffc1cb7b9f19f7/diff",
"WorkDir": "/var/lib/docker/overlay2/f07b162a86e9d9ee810fca80561e691caf0e3759a0b2fe12f3ffc1cb7b9f19f7/work"

},
"Name": "overlay2"

}

5

41. We’re going to look at what files are changed in the very top (last-added)
layer of the image, which is called UpperDir. Let’s save that directory
name in the $dir variable.

dir=$(docker inspect contents_were_digits | jq -r '.[] | .GraphDriver.Data.UpperDir')

42. Change your working directory to that one.

cd $dir

43. List the entire contents of that directory:

find

44. Note that there’s an etc directory and just one file: changedfile.txt.
Here’s the output from our test system:

.

./etc

./etc/changedfile.txt

45. Display the contents of that file:

cat etc/changedfile.txt

46. Note that the file contains the contents of the changedfile.txt file that
we changed in each container. Here’s the output from our test system:

1234567890

47. Look at the history for the contents_were_digits image one more time
with docker history:

docker history contents_were_digits

48. Notice that the diff/ directory that we just looked at is the upper layer
of this image. When you start a container from the image, this diff
directory’s contents are mounted onto the root of the container, on top of
whatever files the previous layer contained. Union-mounting allows this
upper layer to only contribute/overrule the exact files to the filesystem
that this upper layer contains.

49. For extra credit, repeat the process for the LowerDir layer. You’ll find
this command helpful:

cd $(docker inspect contents_were_digits | jq -r '.[] | .GraphDriver.Data.LowerDir')

6

	Conventions
	Steps

