Exercise: Container Registry (BONUS)

Docker has a very useful feature that uses this layered union-mounted filesystem.

When we build another container image whose Dockerfile has lines in common
with a Dockerfile we’ve already built against, Docker keeps track of what filesys-
tem layer contained the changes made by each step in the Dockerfile, and skips
running the command when it knows what the results would be. We’ll explore
this here.

NOTE: when an instruction shows you the results from our test system, it often
won’t match your machine exactly down to the numbers, especially when time
units like seconds are involved. Don’t worry about this.

1. Start up a fresh Ixterminal by clicking the “sparrow” logo in the bottom-left
corner of the screen, clicking run, typing lxterminal and hitting enter.
Alternatively, use the hot key sequence below:

<hold down Alt><hit F2>1xterminal<HIT the enter key>
2. Log in to the docker virtual machine with password logidebtech:

ssh user@docker
logidebtech

3. Install an NTP daemon on this host. Then make sure you have the
gcr.io/distroless/base image on this host - we have chosen it for its
small filesystem size. docker pull retrieves the image from the gcr.io
image registry and caches it on this machine’s Docker cache.

sudo apt -y install ntp
logidebtech
docker pull gcr.io/distroless/base

4. Start the Docker registry now on this host.
docker run --name=registry -d -p 5000:5000 -e REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY=/d:

5. Tag the distroless/base image you already have as distroless-base,
but on your private local registry, where it will thus be named
localhost:5000/distroless-base:

docker tag gcr.io/distroless/base localhost:5000/distroless-base

6. Push this image up to your local registry:
docker push localhost:5000/distroless-base

7. Now delete your local copy of Docker Hub’s gcr.io/distroless/base,
but look at the free disk space before and after:

df -m /
docker rmi gcr.io/distroless/base
df -m /

8. Notice that the operation didn’t really free up space — here’s the output
from our test system:

user@cfs:~$ df -m /

Filesystem 1M-blocks Used Available Use) Mounted on

/dev/vdal 5949 2265 3408 40% /

user@cfs:~$ docker rmi gcr.io/distroless/base

Untagged: gcr.io/distroless/base:latest

Untagged: gcr.io/distroless/base@sha256:ce8bc342dd7eebObaccbef2ce00afcOc72afleal66794£55e£8:
userQcfs:~$ df -m /

Filesystem 1M-blocks Used Available Use) Mounted on

/dev/vdal 5949 2265 3408 40% /

9. Now delete your local copy of your registry’s distroless-base image
using the docker rmi (remove image) command. Check the free disk
space before and after:

df -m /
docker rmi localhost:5000/distroless-base
df -m /

10. Notice that this image deletion did free up space and that this image
remove command had two extra lines of output, saying that layers were
deleted. Here’s output from our test system:

user@cfs:~$ df -m /

Filesystem 1M-blocks Used Available Use) Mounted on

/dev/vdal 5949 2265 3408 40% /

user@cfs:~$ docker rmi localhost:5000/distroless-base

Untagged: localhost:5000/distroless-base:latest

Untagged: localhost:5000/distroless-base@sha256:9ad1a806eafbeaf7ce3dc5dc4dbdd8bc2d215e6182e4!
Deleted: sha256:2e9fdb5bbbcb2dfd7807b928a2fabd5df5cfe3£02983c9b7e2c6263f0a%eeddl
Deleted: sha256:28bflce335eadb04b11046842219e9a703203ad454126c491140a68£7££e93d8
Deleted: sha256:0b031aac65698c8794dc6bc317a45589e07bc2db1421178£30a2c7f69a4a2¢cfb
user@cfs:~$ df -m /

Filesystem 1M-blocks Used Available Use) Mounted on

/dev/vdal 5949 2241 3432 40% /

11. Think about what’s happening here. Docker is saving space by keeping
a hash of each image layer and simply tagging one or more layers with

whatever name we tag it with. So the distroless/base image layers
aren’t deleted until no tags refer to them.

12. Now, let’s pull this image back down from our local registry:
docker pull localhost:5000/distroless-base

13. Let’s create an image based on this one. Switch directory to
/home/user/imagedev/:

cd /home/user/imagedev/
14. Create a Dockerfile in this directory.

cat <<EOF >Dockerfile

FROM localhost:5000/distroless-base
COPY Dockerfile /usr/share

EOF

15. This Dockerfile says we’ll start with the distroless/base image you just
pushed to the repository, then copies the current directory’s Dockerfile
into it.

FROM localhost:5000/distroless-base
COPY Dockerfile /usr/share

16. Build a container from this image with the docker build command, which
takes a name (a tag) and a directory in which to find a Dockerfile file.
We'll call this image localhost:5000/base-plus-dockerfile.

docker build -t localhost:5000/base-plus-dockerfile .

17. Now let’s build a more useful container image. Change directory to the
build-with-du subdirectory:

cd /home/user/imagedev/build-with-du
18. Display the Dockerfile in this directory.
cat Dockerfile

19. Note how this Dockerfile starts with the localhost:5000/distroless-base
image, then copies a du binary into /bin. It also uses two more directives,
ENTRYPOINT and CMD, to specify a program to run when the container
starts, along with any arguments passed in on the command line. Here’s
the sample output on our system:

FROM localhost:5000/distroless-base
COPY du bin/

ENTRYPOINT ["/bin/du","-ks"]

CMD ["/bin"]

20. Build a container from this image with the docker build command, which
takes a tag and a directory in which to find a Dockerfile file.

docker build -t localhost:5000/base-plus-du ./

21.

Let’s start a container based on localhost:5000/base-plus-du, using
the -d (detach) flag to detach from the container’s stdio. We’ll name the
container ctr:

docker run -d --name=ctr localhost:5000/base-plus-du

22.

This container has completed and exited, but we can go look at its output
via the docker logs command:

docker logs ctr

23.

The output you see will be the size of the /bin/ directory in bytes. Delete
the container now:

docker rm ctr

24.

Note that the container’s output gave us the disk usage of the /bin directory
in kilobytes. What if we wanted this image to do the same thing, using
/bin as a default directory to measure, but allowing the user to specify a
different directory, say /usr, without having to rebuild the image? This
is exactly what CMD does in the Dockerfile. It indicates arguments that
you can override easily. by putting them on the end of the docker run
command line. Let’s remove the -d flag, so we can see the output in real
time and add a -rm flag, so the container is destroyed as soon as it exits:

docker run --rm --name=ctr2 localhost:5000/base-plus-du /usr

25.

26.

Note that we now see the total size of the /usr directory in kilobytes. So,
you’ve seen how ENTRYPOINT and CMD interplay. Summarizing:

ENTRYPOINT tells Docker what program to run when this container starts. It
can optionally include arguments. These arguments aren’t easily overriden,
unless the entire entrypoint program is replaced.

CMD indicates arguments that Docker should add to the command line
created from ENTRYPOINT. These arguments are intended to be easily
overwritten, the way we overwrote /bin with /usr.

This produces the situation where the command run as the container’s
first process will start with du -ks and end with either /bin or whatever
is placed after the image name on the docker run command line.

Let’s push this container image we’ve built to our local registry - the output
should be interesting:

docker push localhost:5000/base-plus-du

27.

Note that the output shows that Docker didn’t have to push the two of
the layers to the registry, as the registry already had them! Our sample
output follows:

Using default tag: latest

The push refers to repository [localhost:5000/base-plus-du]

7d221ee8ae69: Pushed

f89ce2lacaba: Mounted from distroless-base

0b031aac6569: Mounted from distroless-base

latest: digest: sha256:52ee4f9b7565d65f3c2db68afd97384ebadbe0899f0f6076ce2c5c43489550b6 size

28. That will certainly make things faster, especially when we’re pushing
to an Internet-connected registry like Docker Hub! Let’s delete the
base-plus-du image from our local image cache - we’ll leave it up on
the registry, of course:

docker rmi localhost:5000/base-plus-du
29. Now, let’s pull down the container image again.
docker pull localhost:5000/base-plus-du

30. Note that Docker didn’t have to pull down some of the layers - the ones
that were part of the distroless-base that it still had cached. Here’s
the sample output from our machine:

Using default tag: latest

latest: Pulling from base-plus-du

36698cfab275: Already exists

6a8659ec8836: Already exists

7c£3941d8a27: Already exists

Digest: sha256:52ee4f9b7565d65£3c2db68afd97384ebadbe0899£0£6076ce2c5c43489550b6
Status: Downloaded newer image for localhost:5000/base-plus-du:latest
localhost:5000/base-plus-du:latest

31. Imagine that a colleague of yours had already cached distroless-base
and wanted to download base-plus-du the way you just did. Their
download time would be greatly reduced because they only need to pull
down this one layer of the image: the layer that represents these lines from
the Dockerfile:

COPY du bin/
ENTRYPOINT ["/bin/du","-ks"]
CMD ["/bin"]

32. Let’s run a container to see one more Docker feature: volume mounting.
Start a new container based on base-plus-du, but to mount the host’s
/usr onto the container’s /mnt directory using -v, and tell the container
to do a disk usage tally of that directory:

docker run -v /usr:/mnt --rm --name=ctr3 localhost:5000/base-plus-du /mnt

33. Note that this operation took a little longer to run. It also showed the
enormous size difference of your the virtual machine’s /usr directory, versus
that of the container’s /usr directory. Here’s the output of this command:

1476708 /mnt

34. Finally, let’s build the container image from the /home/user/imagedev/busybox-from-scratch

directory, then explore it with an interactive shell. Here are three com-
mands to build and run the image:

cd /home/user/imagedev/busybox-from-scratch
docker build -t localhost:5000/busyboxfromscratch .

35. Stop for a second to check how much smaller the last couple images you’ve
built are than centos was:

docker images | egrep '(centos|busybox|base-plus-du)'

36. Notice that the two images you built are about one tenth (0.1) times the
size of the centos:7 image. Here’s the sample output from our system:

localhost:5000/busyboxfromscratch latest 4cbcffbfe310 2 minutes ago
localhost:5000/base-plus-du latest 750eabf6a6b2 31 minutes ago
centos 7 eebb6ee3f44bd 6 months ago

37. Now explore the busybox image via an interactive shell in a running
container - feel free to run a few commands in the container, but don’t
exit the shell:

docker run -it --name=busybox localhost:5000/busyboxfromscratch /bin/sh
38. Detach from the container’s shell by hitting CTRL-P-Q.

39. Run a docker inspect command to see how you might get the details for
a container, like it’s IP address:

docker inspect busybox

40. Notice that the end of the output shows the container’s IP address. After
class, you can parse the rest of the output with jq if you’d like. You don’t
need to - just realize this is part of how Kubernetes will be orchestrating,
say, networking, for thousands of containers. Here’s the end of our sample
output on that last command:

"IPAddress": "172.17.0.3",
"IPPrefixLen": 16,

"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": O,
"MacAddress": "02:42:ac:11:00:03",
"DriverOpts": null

21.2MB
20.4MB
204MB

