
Exercise: Kubernetes Pod Security Policy Defense

Steps
1. Let’s try another defense on the cluster takeover scenario: pod security

policies. Now we want to stop any non-admin account from staging the
attack pod. Our other focus will be to make sure that any pod launched
has to have an AppArmor profile.

2. SSH into the Kubernetes control-plane node, using the bustakube user’s
password bustakube:

ssh bustakube@bustakube-controlplane
bustakube

3. sudo to root:

sudo su -

4. Let’s remove the RBAC controls we had added at the end of the Own the
Nodes exercise.

kubectl delete rolebinding get-only-on-pods-frontend-binding
kubectl delete rolebinding get-only-on-pods-redis-binding
cd /usr/share/bustakube/Scenario1-OwnTheNodes/
kubectl apply -f Namespace-Default/binding-get-list-exec-pods-to-frontend.yaml
kubectl apply -f Namespace-Default/binding-full-rw-and-exec-on-pods-to-redis.yaml

5. We’ll apply a pod security policy (PSP) that will block any hostPath
volumes from being mounted. Take a look:

cd Defense/PodSecurityPolicies
more psp-30-root-allowed-no-apparmor-required.yaml

6. Now, apply the pod security policy you just reviewed:

kubectl apply -f psp-30-root-allowed-no-apparmor-required.yaml

7. We need a role, a list of actions that can be performed by any bound
service accounts:

kubectl apply -f role-cluster-use-psp-30-root-allowed-no-apparmor-required.yaml

8. We’ll need a binding that binds all authenticated users to this role:

1

kubectl apply -f binding-cluster-all-to-psp-30-root-allowed-no-apparmor-required.yaml

9. Before we go on, we’ll need to activate the PodSecurityPolicy controller.

/usr/local/bin/toggle-psp-controller.sh activate

10. Now, let’s see that the redis-master pod’s service account can’t stage
such a pod. First, copy kubectl and the attack pod definition into the
redis-master pod:

pod=`kubectl get pods | grep redis-master | awk '{print $1}'`
kubectl cp /usr/bin/kubectl $pod:/usr/bin
kubectl cp /usr/share/bustakube/Scenario1-OwnTheNodes/Attack/attack-pod.yaml $pod:/tmp

11. Now, exec into the redis-master pod. to see whether it can stage a
hostPath-mounting pod:

kubectl exec -it $pod -- /bin/bash
export PS1="\u@\h # "
kubectl apply -f /tmp/attack-pod.yaml

12. For extra credit, see if you can modify the pod security policy to allow
the hostPath pod mounting, but to force an AppArmor profile that won’t
permit the pod to read the host’s /etc/shadow file.

echo On my own here

2

	Steps

