
Exercise: SELinux - Creating a Custom Policy
for echodaemon

Steps
Before we do this exercise, we need to start up echodaemon on the RickMorty
system if it’s not started already.

Wait about a minute for the rickmorty system to fully start / resume from the
managedsave.

Now, confirm that your system has received the script from the sync.

ls -l /sync/bin/start-rickmorty-echodaemon.sh

If it has, make sure that the SSH program is answering on RickyMorty:

ssh -o StrictHostKeyChecking=false -p 22222 -i /sync/.rickmortykey root@rickmorty

Exit that SSH session. Now, run the start-rickmorty-echodaemon.sh script:

/sync/bin/start-rickmorty-echodaemon.sh

1. On the RickdickulouslyEasy (rickmorty) CTF machine, there’s a strange
service running on port 22000.

Connect to the service with netcat:

nc rickmorty 22000

2. Type a few characters and hit Enter to receive a rejection “That’s not it!
Go away!” message.

3. See if you can guess the password. Take a look at Jay’s t-shirt on his bio
picture on page ix of this book:

https://www.amazon.com/Stealing-Network-How-Own-Continent/dp/
1931836051

4. The password is at the bottom of this page.

5. You’ll see the root user’s SSH private key file from this system displayed
on the screen. Use an editor to write this private key into a file in your

1

https://www.amazon.com/Stealing-Network-How-Own-Continent/dp/1931836051
https://www.amazon.com/Stealing-Network-How-Own-Continent/dp/1931836051

current directory named rickmorty-key, run a chmod go-rwx on that file,
then ssh into the rickmorty machine:

nano rickmorty-key
chmod go-rwx rickmorty-key
ssh -p 22222 -i rickmorty-key root@rickmorty

6. Let’s figure out which program just let us in:

netstat -vantp | grep 22000

7. OK - this was echodaemon. Let’s block this attack by creating an SELinux
policy for the echodaemon program.

8. First, if you’ve been logged out of the rickmorty virtual machine, log back
in:

ssh -p 22222 -i rickmorty-key root@rickmorty

9. Note that if echodaemon is running, it’s running with the type
unconfined_service_t.

ps -efZ | grep [e]chodaemon

10. Let’s make a directory in which to work on our policy:

cd ; mkdir selinux ; cd selinux

11. Also, since we can’t cat out a file right now when we want to, run this
please:

alias cat="grep -v asdfghjkl"

12. First, we’ll run sepolicy generate to create a simple dummy policy:

sepolicy generate --init /usr/local/sbin/echodaemon

13. This created:

echodaemon.te - a type enforcement file with rules
echodaemon.if - an interface file describing domain transitions into echodaemon_t
echodaemon.fc - a file context list, stating how the echodaemon binary should be labeled

14. Compile the policy package for echodaemon:

make -f /usr/share/selinux/devel/Makefile echodaemon.pp

15. Ignore all the “duplicate definition” errors. Install the echodaemon policy
package that created:

semodule -i echodaemon.pp

16. The echodaemon policy will start out disabled and in permissive (not
enforced, but logging) mode. Enable the policy, but keep it in permissive
mode so we can get the AVC log messages about what actions echodaemon
takes.

2

semodule -e echodaemon

17. Stop the echodaemon program if it’s running.

kill `ps -ef | grep [e]chodaemon | awk '{print $2}'`

18. Now tell SELinux to label the echodaemon binary with its new
echodaemon_exec_t type:

restorecon /usr/local/sbin/echodaemon

19. Observe the new file context on /usr/local/sbin/echodaemon:

ls -lZ /usr/local/sbin/echodaemon

20. Start the echodaemon program.

systemctl start echodaemon

21. Make sure echodaemon is now running with the type echodaemon_t.

ps -efZ | grep [e]chodaemon

22. Now, let’s exercise the echodaemon.

Note: Any time we make a change, we’ll need to restart the echodaemon
program.

kill `ps -ef | grep [e]chodaemon | awk '{print $2}'`
systemctl start echodaemon

23. Exercising the Confined Program - Round 1

Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

24. Type any string except for the magic password you typed to see the SSH
key file.

abc

25. Now end this netcat session with Ctrl-C.

26. Now check out the AVC messages that SELinux logged by running
ausearch:

ausearch -m avc -ts recent | grep echodaemon

27. Let’s pass these log messages straight into audit2allow, asking it to
append additional rules onto our type enforcement rules file:

ausearch -m avc -ts recent | grep echodaemon | audit2allow -R >>echodaemon.te

28. Remove the permissive line from echodaemon.te now, if you haven’t done
this already:

sed -i 's/^permissive/#permissive/' echodaemon.te

3

29. Rebuild the echodaemon policy package:

make -f /usr/share/selinux/devel/Makefile echodaemon.pp

30. Now upgrade/re-install the echodaemon policy package:

semodule -i echodaemon.pp

31. It’s time for the first good test. Let’s see if our custom SELinux policy
will allow the normal behavior we exercised previously. We want to make
sure that we can get echo’d text. We are not testing the attack yet.

32. Restart the echodaemon:

kill `ps -ef | grep [e]chodaemon | awk '{print $2}'`
systemctl start echodaemon

33. Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

34. Type any string except for the magic password you typed to see the SSH
key file.

def

35. SELinux isn’t allowing us the echodaemon program to send us any text
back - neither the password request, not the rejection.

36. End this netcat session with Ctrl-C.

37. Now check for a new AVC error:

ausearch -m AVC -ts recent | grep echodaemon

38. We have new AVC messages - continue below where we’ll repeat the
audit2allow step.

39. If you don’t have any new AVC messages, please checkout out the trou-
bleshooting section Dealing with Silent Block Rules below, then come back
here.

40. Adding to the Profile

Our profile isn’t going to catch everything on its first round.

Let’s pass these log messages straight into audit2allow, asking it to
append additional rules onto our type enforcement rules file:

ausearch -m avc -ts recent | grep echodaemon | audit2allow -R >>echodaemon.te

41. Rebuild the echodaemon policy package:

make -f /usr/share/selinux/devel/Makefile echodaemon.pp

42. Install the upgraded echodaemon policy package:

semodule -i echodaemon.pp

4

43. Restart the echodaemon:

kill `ps -ef | grep [e]chodaemon | awk '{print $2}'`
systemctl start echodaemon

44. Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

45. Type any string except for the magic password you typed to see the SSH
key file.

ghi

46. SELinux isn’t allowing us the echodaemon program to send us any text
back - neither the password request, not the rejection.

47. End this netcat session with Ctrl-C.

48. When we check for a new AVC error, we don’t find any new ones. To see
this, run a date command:

date

49. Now change your ausearch command so that it finds things only from the
last couple minutes - you’ll need to replace this time:

ausearch -m AVC --start '15:22:07' | grep echodaemon

50. Now let’s try exercising the program, so you can trigger new AVC errors.

51. Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

52. Type any string except for the magic password you typed to see the SSH
key file.

jkl

53. SELinux isn’t allowing us the echodaemon program to send us any text
back - neither the password request, not the rejection.

54. End this netcat session with Ctrl-C.

55. We’ll now have new log messages. Let’s pass them straight into
audit2allow, asking it to append additional rules onto our type
enforcement rules file:

ausearch -m avc -ts recent | grep echodaemon | audit2allow -R >>echodaemon.te

56. Rebuild the echodaemon policy package:

make -f /usr/share/selinux/devel/Makefile echodaemon.pp

57. Install the upgraded echodaemon policy package:

semodule -i echodaemon.pp

5

58. Restart the echodaemon:

kill `ps -ef | grep [e]chodaemon | awk '{print $2}'`
systemctl start echodaemon

59. Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

60. Type any string except for the magic password you typed to see the
/etc/shadow file.

mno

61. We now see “That’s not it! Go away!” echoed back. So our program now
works. Hit Ctrl-C.

62. If you’re at this point, echodaemon is letting you enter a single line of text
(not the secret key), then giving you a reply. If that’s not happening, raise
your left hand.

Now it’s time for the moment of truth. Let’s make sure the module blocks
the backdoor.

63. Connect to the echodaemon from the rickmorty system:

nc 127.0.0.1 22000

64. Type the magic password you typed to see the SSH key file and make sure
it doesn’t show up.

65. Change your Slack status to :thumbsup:.

66. Suspend the virtual machines:

sudo /scripts/suspend-all-vms.sh

Troubleshooting
Dealing with Silent Block Rules

We have a silent block rule that is flagged dontaudit. Let’s disable the
dontaudit rules:

semodule --disable_dontaudit --build

Note
We deactivated the dontaudit rules because one was blocking normal program
behavior, but not logging an error to the audit log. Once you’ve created a policy
that works, you can re-enable the dontaudit rules by running:

semodule --build

6

Another cool trick for searching logs is checkpointing - from the ausearch man
page:

ausearch --checkpoint /etc/audit/auditd_checkpoint.txt -i
_au_status=$?
if test ${_au_status} eq 10 -o ${_au_status} eq 11 -o ${_au_status} eq 12 ; then

ausearch --checkpoint /etc/audit/auditd_checkpoint.txt --start checkpoint -i
fi

Password Hint
The password is: gotroot

7

	Steps
	Troubleshooting
	Dealing with Silent Block Rules

	Note
	Password Hint

